Technology
Arts Sciences

TH Koéln

Progressive Web Apps - Costs, Benefits
and Tradeoffs

MASTERARBEIT
ausgearbeitet von

Yasa Yener

zur Erlangung des akademischen Grades

MASTER OF SCIENCE (M.Sc.)

vorgelegt an der

TECHNISCHEN HOCHSCHULE KOLN
CAMPUS GUMMERSBACH
FAKULTAT FOR INFORMATIK UND
INGENIEURWISSENSCHAFTEN

im Studiengang

INFORMATIK / COMPUTER SCIENCE
SCHWERPUNKT: SOFTWARE ENGINEERING

Erster Priiffer: Prof. Dr. Stefan Bente
Technische Hochschule Koln

Zweiter Priifer: Dr. Christian Willmes
Universitat zu Koln

Gummersbach, April 13, 2018

Adressen:

Yasa Yener

Homarstrafke 24

51107 Kéln
yasa.yener@smail.th-koeln.de

Prof. Dr. Stefan Bente
Technische Hochschule Kéln
Institut fiir Informatik
Steinmiillerallee 1

51643 Gummersbach
stefan.bente@th-koeln.de

Dr. Christian Willmes
Geographisches Institut
Universitat zu Koln
Albertus-Magnus-Platz
50923 Koln
c.willmes@uni-koeln.de

iii

Abstract

Many tasks that humans perform in their daily lives are computer-assisted. The actual
devices are, however, often very heterogeneous in nature and differ in their architecture
(x86/x64, ARM), operating system (Windows, MacOS, Linux, Android, iOS), but
also other factors like performance or network availability. Those factors can strongly
increase the complexity for software engineers that want to address those platforms.
Progressive web apps try to apply a subset of requirements, that are usually expected
from native applications, to the web, by using modern, and in some cases experimental,
technologies. This thesis investigates which trade-offs remain and which efforts have to
be made in order to fulfill most of these requirements.

It shows that progressive web apps are the most approachable type of application that
is currently available, but have noticeable limitations when it comes to accessing most
OS-level APIs. They do prove to be a viable substitute for native mobile applications
as shown in multiple case studies. The biggest challenges in building progressive web
apps seems to resolve around managing user interaction and keeping up with the vast
majority of technologies, frameworks and patterns that keep emerging.

v

Contents
1. Introduction 1
1.1. Viability of Web Applications 2
1.2. Identifying good practices 2
1.3. Approach 3
I. State of Technology 4
2. Building Applications in JavaScript 6
2.1. Prototypical Inheritanceo 6
2.2, Testing 7
2.3. Routing and Rendering 10
3. Progressive Web Apps 13
3.1. Service Workers 14
3.2. App Shell Model 15
3.3. PRPL-Pattern 17
3.4. Web Workers 18
3.5. Operation System Integration, 19
4. Tooling 22
4.1. Package Managers 22
4.2. Module Bundling 23
4.3. Transpiling 24
Il. Building Progressive Web Apps 26
5. The Case Study 28
5.1. Introducing the CRC806 Database 28
5.2. Requirements e 30
5.2.1. BasicFactors 31
5.2.2. Performance Factors, 32
5.2.3. Excitement Factors oL 33
5.3. Architectural Challenges 33
6. Implementing a Progressive Web App 35
6.1. Preparing the Environment oL 35
6.2. Choosing a Frontend Framework 36

6.3. Static Site Generation 41

6.4. Importing the Data
6.5. Making a Responsive Layout
6.6. Implementing Caching Strategies

I1l. Evaluation

7. Evaluation of Progressive Web Applications
7.1. Requirements Coverage
7.1.1. Basic Factors
7.1.2. Performance Factors
7.1.3. Excitement Factors
7.2. Assessment of current Practices
7.3, Costs e
7.4. Benefits

8. Conclusion
8.1. Viability of Web Applications
8.2. Good practices for Progressive Web Applications
8.3. Final Conclusion and Outlook

Bibliography

List of Figures

Appendix
1. ECMAScript 2015+
2. Examples for Prototypical Inheritance in JavaScript

3. Module Pattern

Eidesstattliche Erklarung

53

54
54
54
57
58
59
64
65

1. Introduction

Humans perform many tasks in their daily lives that are computer-assisted. The un-
derlying computing systems are often heterogeneous in order to fit their niche in their
respective context. Developing software for those devices can quickly become a com-
plex task, as software engineers have to address different operating systems and system
architectures, while also deal with varying processing performance and network avail-
ability. Since each specific platform requires its own body of knowledge, development
of such cross-platform software will often require hiring multiple experts and/or teams
of their respective domain in order to possibly deliver a consistent experience. This
increases development costs as well as making it harder to come to a general consensus,
since more parties are involved.

Netscape developers back in 1999 identified two main approaches to cross-platform
development[CY99|. One was developing a separate version for each platform, which
would cause a lot of code to be rewritten from scratch every time. The second approach
would attempt to write most of the software as generic, platform-independent code with
preferably less to no code specific to a platform. They also found some costs or penalties
to cross-platform development. Netscape engineers estimated 15-20% human effort and
time penalty in design and coding for cross-platform versions of their product|CY99,
P. 77]. They’re also describing additional challenges in staffing the platform-specific
experts, at one point leaving them with only one expert for a specific division, which
ended up being a bottleneck. Additionally, integrating and testing all these different
versions produced significant extra costs. A more recent study from 2013 focuses more
on the variety of mobile platforms and the challenges that arise when developing cross-
platform software for those [Smul2]. While platform-native APIs are often feature-rich,
they usually force a specific language (e.g. Java on Android, Objective C/Swift on iOS)
upon the developers. These developers need a development license in some cases, while
having to subject to the respective terms of service to publish their application on the
platform-specific ecosystems.

Web applications, on the other hand, are for the most part unaffected by these cross-
platform challenges, as they are available on all internet-connected devices with a
browser. Progressive web apps introduce a new class of web applications which attempt
to close the gap between web apps and native apps by introducing new technologies
and focusing on load times and Ul performance. This thesis is driven by two key points:
The first point is about investigating the viability of web applications as a whole and
how the usage of progressive web apps can be useful. Secondly, good practices should
be identified in order to assist in building a progressive web app.

1.1. Viability of Web Applications

In order to have merit in real-world applications, investigation has to be made about the
exact capabilities of progressive web apps, especially compared to native applications
and the requirements those usually fulfill. Web applications allow usage across any
platform with a working browser, thus eliminating the need to acquire experts of many
strongly varying fields. Another factor that benefits web applications is their ease of
access, as no installation setup is required. Less trust is needed for users to try a web
application, since every modern browser sandboxes the web application away from the
actual filesystem, minimizing the risk of malware. Web applications do, however, bring
their own share of disadvantages. They usually require a working network connection
to start with and only function while opened in a browser. Web applications don’t
integrate into the operating system at all as their URL has to be typed out or accessed
by operating the bookmarking/history UI of the browser, or even searched for using
a search engine. Web applications are downloaded every time they are accessed and
can cause further delays depending on the resources that need to be retrieved from the
network. The apparent problem with web applications lies within being perceived as
seemingly less capable, slower or of less quality than using native applications.
Progressive web apps try to address those disadvantages by introducing new technology
like service workers, webworkers and web manifests among new concepts like PRPL,
App Shell and others.

1.2. Identifying good practices

Another goal of this work is the identification of possible good practices for building
progressive web apps. Traditional websites followed a rather simple pattern. The User
requests a URL (often by typing manually or visiting a bookmark /history entry), the
browser will then issue a HTTP GET Request to a webserver. That webserver would
then serve an HTML document. The Browser then parses that document and checks for
further requests to be made (usually further GET’s to stylesheets, images and scripts).
Visiting a new subpage on a site would often repeat this cycle, leaving the user waiting
and the browser displaying a blank white screen in meanwhile. Since the browser loads
resources asynchronous, bigger images would usually pop into the page slightly delayed,
shifting contents around, which can be a quite jarring user experience.

Todays web applications evolved from back then, by moving most of the application
logic to the frontend presented by the browser. Instead of wiping the current webpage
with all its resources out of existence every time a request to a webserver is made, only
the affected module of a webpage is updated on the spot. As a consequence, a lot of
new concerns entered the world of frontend development. While, traditionally, devel-
opers wrote HTML to declare contents, JavaScript to modify said contents and CSS to
change the layout, todays development often involves different languages which need an
additional build step before the application can be deployed. Tooling presents a rather
big, and seemingly overwhelming|Cle15| part of todays frontend development|Jan17].
In this case, good practices would suggest which practices, concepts, tools and patterns
are useful and why, and where decisions should be made according to the underlaying

project.

Another aspect are architectural concerns, which, while assisted by tools, are ultimately
decided by the software engineers at hand. This work aims to illustrate possible patterns
and caveats when planning and implementing a progressive web app. Good practices
entail structural, functional and usability concerns.

1.3. Approach

The approach to answer these questions is broken down in three parts. In the first part,
a general overview over the current state of technology will be given, which will go into
detail how modern web applications are structured before introducing technologies and
patterns that are specific to progressive web apps. Finally, the overview will go into
tooling and how the JavaScript ecosystem works.

The second part focuses on the concrete implementation of a progressive web app and
illustrates decisions that may go into building one. For this, a case study will be held in
which the CRC806 Database[Will6] - an existing web application that hosts a variety
of research data - will be rebuild as a progressive web app. The key challenges that
appear during the implementation will be the major focus of this second part.

The third and final part is the evaluation of the practices that went into building a
progressive web app. This will factor in suggested practices from different sources, as
well as the findings that surfaced during the actual implementation. The evaluation
process will then lead into the conclusion that aims to answer the key points stated
earlier (see previous two sections 1.1 and 1.2).

Part |.

State of Technology

This chapter attempts to establish a theoretical foundation to achieve a better under-
standing on how web applications are build and what progressive web apps bring to the
table. In order to achieve this, the chapter is broken down into three aspects.

The first chapter, Building Applications in JavaScript, will take a closer look into the
technologies that are available on the web and how they can be utilized. If additional
Browser-plugins are to be exempt, JavaScript is the only way to implement application
logic in the browser.

The second chapter, will look further into progressive web apps and which technologies
and concepts come with those.

Finally, in the third chapter, Tooling, we will explore the tooling that comes with mod-
ern frontend development and how they can improve or ease the development process.

2. Building Applications in JavaScript

JavaScript is an interpreted scripting language that allows developers to implement
application logic within the browser. In the past, JavaScript was far from being as
feature-rich as it is today. Technologies like Adobe Flash, Microsoft Silverlight and
Java Web Applets were attempts to close that gap, but they brought their own issues.
These technologies always required some sort of browser plugin to be installed and
regularly updated in order to avoid security issues or incompatibilities. Contrary to
the usually open web technologies, software based on those technologies, were often
proprietary in nature and, in the case of Adobe Flash, needed commercial software to
build upon. Running these plugins cross-platform would in some cases (e.g. Microsoft
Silverlight) need workarounds or unofficial, community-maintained software.

With the advent of HTML5 and increased support by browser makers, JavaScript
has become a real asset to modern web development. It is important to note that,
while JavaScript itself is not standardized, it is heavily based on ECMAScript[Ecm17],
which is a continuously evolving standard. The following chapters will illustrate how
Applications can be build using todays JavaScript. For a better grasp on some of the
newer ECMAScript additions, please refer to section 1 in the appendix.

2.1. Prototypical Inheritance

Object-oriented programming is an important tool as it allows developers to break
down complex problems into small, solvable packages, hiding the complexity away be-
hind abstractions. Object-orientation also greatly improves code reuse and modularity,
which, as a consequence, allow for easy replacement of components. It is hard to argue
against object-oriented programming, as it is the de facto standard in most modern ap-
plications. ECMAScript uses prototypical inheritance, which can be used very similar
to traditional inheritance. Traditional inheritance uses classes as some kind of blueprint
for potential objects, only upon instantiation they become working objects. Prototyp-
ical inheritance uses, as the name suggests, prototypes instead of classes to build these
blueprints. The important distinction to make here is that prototypes are already fully
functional objects before any instantiation happens. This can result in unwanted side
effects when prototype-functions are used directly (see fig.2.1), but is rather easy to
avoid by using prototypes after instantiation, just like classes in traditional inheritance.
Another effect of prototypical inheritance to be aware of is how object instances share
the prototype they are based on. When the first object instance modifies a property
that is also an object, any consecutive object instance will now share this modified
property|[Yen17|. This can be avoided by instantiating possible object-based properties
inside the constructor and not inside the prototype. For a closer look into ECMAScript
classes and how they work, please refer to section 2 in the appendix.

Looking at the principles of object-oriented programming, encapsulation, abstraction,

> Array.prototype.push("lol")
1
> var empty = [];
undefined
empty [0]
"lol"

Figure 2.1.: Side effect of using a prototype function directly, opposed to using it on a
properly instantiated array|Dail7|

inheritance and polymorphism|[Anal6|, ECMAScript (and in extension, JavaScript),
seems to be capable of most of them. Inheritance is demonstrated in the appendix (see
section 2 in the appendix) and abstraction comes down to using objects to break down
a complex problem. Polymorphism is reached by overriding methods of the parent-class
if needed. Only encapsulation is hard to use, since ECMAScript does not provide any
public/private or protected keywords to limit visibility of object properties. Instead,
workarounds have to be used where supposedly private properties have to be hidden
behind function scopes and closures (see [Cro01]), which is a lot less intuitive compared
to more traditional, object-oriented languages. The module pattern illustrates one at-
tempt to solve the visibility problem (see section 3 in the appendix).

Another popular approach is the usage of pseudo-private properties where every prop-
erty is prefixed with an underscore to signify how it must not be accessed from outside,
similar to the __ proto_ where direct access is heavily discouraged[MDN17]. How-
ever, this does not in any form enforce visibility, but rather illustrates some kind of
coding guideline in order for other developers to better understand which properties
should or should not be accessed from the outside. There is no protection to any misuse
of that convention.

2.2. Testing

Testing tries to evaluate the robustness of a system, especially when it goes through
multiple iterations. Tests can be automated (e.g. through a build pipeline) in order
to notify software engineers quickly after a test-breaking change has been made. This
can make removing a bug or updating a test to reflect changes easier as the chances
are high that the engineer is still within the mindset of that specific code change. Tests
are usually distinguished by three categories.

Unit Tests Testing of individual functions, where a specific input has to be correctly
mapped onto the correct output

Integration Tests Testing a set of modules in order to ensure their interoperability

Functional Tests Applying a test scenario on the system as a whole without regard of
the systems specifics

Unit and integration tests respect the actual system and its components, and are thus
considered as white box testing, opposed to functional tests which are considered as
black box testing since the systems internals are not taken into account.

A study from 2016 [Shil6] shows a low popularity of JavaScript-testing among web
developers (see fig.2.2). The entry to web development is relatively low, only needing

30 30

14 14

13 I I
3 4

1 2
satisfaction (1 = dissatisfied, 5 = happy)

percentage

Figure 2.2.: Developer-Satisfaction of JS testing-tools from 1 to 5. Data-Source:
http://2016.stateofjs.com /2016 /testing/

an editor and a browser in regards to tools. For effective testing, a lot more tools (see
chapter 4) need to be introduced and learned by developers which might be a possible
reason for the low popularity. Vitali Zaidman listed common functionalities of testing
tools in his article about JavaScript testing|Zail7|:

Provide a test environment A testing environment encapsulates itself from the actual
in-production system in order to create a safe environment to run tests on without
affecting the production system.

Provide a testing structure Testing structures help unifying how tests are structured,
with behavior-driven development (BDD) being one of the more popular approaches
among the established tools. It is often seen as a continuation of test-driven develop-
ment (TDD) which usually operates on technical specifics to be tested on. Dan North
describes BDD as an *"outside-in" methodology’, which ’...starts at the outside by iden-
tifying business outcomes, and then drills down into the feature set that will achieve
those outcomes. Each feature is captured as a “story”, which defines the scope of the
feature along with its acceptance criteria.” [Nor07]. Agile development processes often
also work with user stories to model software requirements. BDD illustrates a viable
approach to translate those stories into the actual process of writing code. Testing

frameworks usually come with a way to define stories for specific modules or functions
that are to be tested.

Provide assertions functions Assertions allow developers to compare an expected
outcome with the actual outcome, when a specific input is given:

assert.equal(add(1,2), 3)
// When inputs are 1 and 2
// the expected outcome of 'add' is 3

Generate, display, and watch test results This is the basic core functionality that is
expected in order to know whether tests succeeded or not.

Generate and compare snapshots of component and data structures This ensures
that changes from previous runs are intended.

Provide mocks, spies and stubs Mock objects can be used in place of actual software
components. This allows a more controlled testing scenario and possibly faster test
execution, e.g. in the case of accessing static example data instead of actually querying
a database.

Stubs goes in a similar direction, but instead of replacing whole components, only select
methods are replaced in order to force a certain behavior or object condition while any
non-stubbed aspects of an object can still be subjected to tests.

Spies observe function calls, especially what causes specific functions to be called, where
they are called and how often they are called.

Generate code coverage reports Allows to quantify how much of the code base is
actually being tested.

Provide browser or browser-like environment with a control on their scenarios exe-
cution This is usually done by using browser automation like selenium|[Sel| or headless
browsers like PhantomJS|Phal.

All these functionalities can be provided by a set of additional tools, where some are
able to address multiple points of that list, while others are more specialized on very
few functions. Most additional tools need some kind of setup and need to be integrated
well into the development process, which further illustrates the point of complexity.

The usefulness of these testing functionalities are dependent on the type of test to be
performed. Unit tests may operate on mocked input data in order to assert whether a
set of input will correctly map to an expected output. If tests are run across multiple
units in form of integration tests, spies may deliver more insight whether all units are
correctly calling each other. Asserts would be less meaningful at this points as the units
themselves should already be tested and known to deliver the expected output on their
own. Functional tests, which are black box tests, do not account for any specifics inside

10

the system, thus a browser or browser-like environment will be necessary in order to
test scenarios similar to real-world user behavior.

2.3. Routing and Rendering

Traditional web sites used to operate on a document-basis, where the top-level domain
would point to the document root and where subpages would follow a tree structure
in the servers filesystem, containing many folders and more documents. In this case,
an url like "example.com /pages/about.html" would have caused the browser to request
the web service located at example.com, which would look for a folder named pages
in its document root, and within that folder a document called about.html. With the
advent of dynamic, server-side interpreters like PHP, ASP.NET, Ruby, Python and
many more, this quickly changed. Instead of requesting different documents, a script
was invoked with a HTTP GET parameter in order to specify the requested page.
In such a system, the previous URL may be expressed with a new URL like this:
example.com/?page=about. Instead of serving static files, a server-side application is
invoked, with the key/value pair "page=about". The application then decides what
content should be served and starts rendering the document just-in-time to be send
back to the requesting browser. This approach is called server-side rendering (SSR)
and comes with many advantages. Since the server forges the requested document, the
provider of the web site will always be in control of what is rendered and how. Sensitive
business logic does not need to be exposed to the client and can instead be processed
on the server-side. As long as the server is able to keep up with incoming requests,
the browser can start rendering the page instantly upon receiving the server response,
since the HTML document is completely rendered at this point. Modern JavaScript

Browser Renders the
bage, Now Viewable, and

to rendered HTML
Response to Browser

]
o
B
]
o
B
11
o
L]

Figure 2.3.: Time until viewable/interactable on a site embedding a JavaScript library
(React), using server-side rendering (see |Gril7])

11

applications on the other hand often use client-side rendering (CSR), where all routing
happens inside the client. The advantage of CSR is an increased perceived (and often
actual) performance, as the page does not reload from scratch every time a subpage is
visited, but instead only the page contents are transmitted between client and server.
This approach will, however, exchange network resources for processing power on the
client side, since the browser is now responsible for rendering the page. With the
current variety of browser-equipped devices, it can be hard to estimate how much Ul
processing can be offloaded to the client without slowing down a pages first impression
(compare fig.2.3 and fig.2.4). Additionally, sensitive business logic still needs to be
done server-side, requiring a more distributed architecture where client-side application
logic and server-side application logic need to communicate with each other. In order

CSR

Browser rowser Page Now Viewable
Downloads JS ac and Interactable

Figure 2.4.: Time until viewable/interactable on a site embedding a JavaScript library
(React), using client-side rendering (see [Gril7])

to regain the ability to have distinct URLs for different pages, URL fragments are
often used. The previous example URL could be expressed as "ezample.com/#about",
using fragments. The client-side routing would then implement a hashchange-event
to react when the URL fragment changes. Since the URL fragments stem from their
original use of anchor links!, most browsers will keep track of any fragment changes
and automatically add them to the browser history. As a consequence a browsers back-
and forward navigation methods will stay intact, despite not actually making network
requests to different pages.

More sophisticated approaches use the history API of modern browsers. This allows
a lot more freedom with the way URLs are formed. Instead of being forced to use
specific URL fragments or conform to the HTTP GET parameter syntax, any URL
can be pushed as a new state to the history API. Visiting a link could change the

! Anchor links allow to jump to a specific position on the current page, opposed to linking to a different
page

12

URL to "example.com/page/about" without any folders or documents in the servers
document root being named that way. This works due to only changing the visible
URL in the browsers address bar, without actually sending a network request to the
above mentioned URL. Additionally, the history API adds an entry to the browser
history in order to jump back and forth between those states. One caveat with this
approach is how URLs, manipulated by the history API, do not actually resolve on
the server when actually following the link. Instead, the server has to be configured
to redirect any requests, regardless of the specified URL, to the base URL, where a
client-based routing mechanism attempts to resolve and render the requested URL.
In general, SSR-Rendered pages tend to have a longer time till first byte than their CSR
counterparts, because of the initial processing done by the server. However, with SSR
the contents can be rendered instantly upon receiving the network response, whereas
CSR needs to finish loading additional JavaScript files in order to start rendering the
page. There are also attempt to mix both, CSR- and SSR-rendered approaches with
isomorphic rendering [Mar16]. This method uses SSR to pre-render the initial route in
order to reach minimum time till first byte. However, any consecutive request is done
via CSR to allow almost instant route navigation.

The upcoming chapter 3 will introduce new technologies, with some of them especially
addressing the load times until a page becomes viewable and interactable.

13

3. Progressive Web Apps

This chapter will describe the core technologies to build progressive web apps (PWA),
built upon the fundamentals presented in the previous chapter. Progressive web app
is an umbrella term for a set of technologies and design patterns which aim to bring a
native-like user experience to the browser by offering a quickly loading and continuously
reactive Ul with deeper integration into the underlying operating system compared to
usual web applications.

The term progressive web app has first been coined by Google Developer Alex Russel
and Designer Frances Berriman, which describe a class of applications with the following
characteristics (points from [Rus15]):

Responsive Responsive Ul elements ensure that information stays viewable on vary-
ing screen sizes and orientations.

Connectivity independent Critical resources can be pre-cached by a service worker
(see section 3.1) in order to serve them from cache when no network connection is
available.

App-like-interactions Use the app shell model (see section 3.2) to resemble interaction
more similar to native apps.

Fresh While content may be fetched already up-to-date during the use of a progressive
web app, the app shell can be updated by utilizing the service worker update process.

Safe Using HTTPS to ensure that requests are indeed sent to the intended recipient
and responses have not been manipulated by anyone intercepting the connection (known
as man-in-the-middle attack).

Discoverable Apps that use the web app manifest which contain essential meta data
like title, icons, description and more (see section 3.5).

Re-engageable Allows access to re-engagement Uls of the OS. This usually boils down
to push notifications, which may steer the user back to the progressive web app, even
though the user may be engaged in another app right now.

Installable Allows to put an application shortcut to a home screen, a desktop, a
launcher or start menu in order to integrate a progressive web app among other, native
apps (see section 3.5), without relying on any specific app store.

14

Linkable Providing a URL allows to easily share an application with others. A pro-
gressive web app will be able to launch frictionless without any setup, once the URL
is accessed.

This shows how the term progressive web app actually combines many different re-
quirements or properties which actually depends on a set of technologies, with some of
them being available for quite some time, rather than one specific technology. Using
that term makes it easier to communicate those concepts and ideas and make them
more marketable. From a software engineers perspective however, it’s important to
look behind the umbrella term and gain a better knowledge of the underlying technolo-
gies. That being said, progressive web apps are still evolving and new concepts and
technologies may arise anytime, so while this work will attempt to elaborate on the
core technologies, it cannot claim to paint a complete picture.

3.1. Service Workers

A service worker is a specification|Rus+17] for an additional, self-contained JavaScript
file that may be installed during the execution of the regular JavaScript code of the
current HTML document (see fig.3.1). Its main purpose is for web applications to exist
beyond the browser tab. A successfully installed service worker can deliver cached con-
tents when offline, send and receive push notifications or fetch data in the background,
regardless of the web app currently being opened in a browser or not.

Service workers are based on web workers, which have been supported by every ma-
jor browser since at least 2010. Web workers allow true concurrency for JavaScript
applications, which are usually single threaded. This is mostly used to offload time-
consuming processes without slowing the UI down (more about web workers in section
3.4). While a web application may use multiple web workers as needed, there can only
be one service worker for a defined scope. Attempting to install another service worker
will replace the active one. A service worker has multiple states that are described by
the service worker lifecycle [Arcl8]:

Installing This happens the first time a page that registers a service worker is called.
On future requests, the service worker will usually be already installed from now
on, so this only happens once.

Waiting When a service worker successfully installs, it will usually directly enter the
active state, as long as there is currently no service worker active. However, if
a previous service worker is active, the new service worker will enter the wait-
ing state until the current service worker does not control any client anymore.
The waiting phase can be skipped by calling self.skip Waiting(), which may be
necessary when a faulty service worker needs to be replaced as soon as possible.

Active Service workers enter this state when they successfully registered upon the first
visit, or activated on a consecutive visit. Only when this state is reached, service
workers can receive fetch and push events.

One of the main benefits of service workers is the combination of the cache API with
the ability to intercept fetch-events from the browser. These events are triggered by the

15

browser every time a resource is requested. When critical resources have been cached
through the cache API, developers can either chose to instantly deliver them on fetch,
or try to fetch from the network first and fall back on the cached resources if offline.
Depending on the use case, developers can adopt different caching strategies|[Ser|:

Network or cache The service worker will attempt to retrieve resources from the net-
work if they load within a specified timeout, else resources are loaded from cache.

Cache only The service worker will always retrieve resources from the cache.

Cache and update The service worker will retrieve resources from the cache while also
updating the cached entry for the next visit if possible.

Cache, update and refresh The service worker will retrieve resources from the cache
and attempt to update the cached entry. If successful the cached content will be
replaced by the current one.

Embedded fallback The service worker will attempt to retrieve resources from the
network, if no network connection is available, resources are retrieved from the
cache.

These caching strategies allow for fine-tuning the compromise between having a minimal
load-time and maximum currentness of data.

In order to install a service worker, it needs to be registered (see fig.3.1). To speed up
the initial page load, it is recommended to register the service worker once the page
finished loading. Especially on low-end devices, the registration of a service worker
during the initial rendering of the DOM can cause the application to become less
responsive during that state [Posl8]. There are use cases where developers may want

if ('serviceWorker' in navigator) {
window.addEventListener ('load', function() {
navigator.serviceWorker.register ('/sw.js');

P

Figure 3.1.: Registration of the service worker (sw.js), once the site has finished loading

to register the service worker early on, in order to start caching immediately, however
this may cause the application to load too many resources at the start which can
possibly slow down the first visit. When all resources are prioritized to load at the
beginning, nothing really is.

3.2. App Shell Model

The previous chapter touched on the topic of caching and different caching strategies.
The app shell model is about decoupling the actual UI from the content and suggests
the caching of all files necessary for rendering the Ul, while the actual contents can still

16

be retrieved from the network if currentness is a concern, and eventually populate the
UT (see fig.3.2). The goal is to instantly (low loading time) and reliably (regardless of
network availability) load a web application similar to native applications.

When implementing the app shell model, a distinction has to be made about what to

application sh\ell content
—

App shell Cats are the best

When my cats look out the window at
another cat | like to pretend they're
judging and disparaging it with little
Britigh accants.

Dynamic content then
populates the view

Cached shell loads instantly on repeat visits.

Figure 3.2.: Distinction between the app shell and content to load, source [Osm17a]

include in the initial UI. Even though the app shell is going to be cached for consecutive
uses, it is important to reduce the amount of data needed to reduce the time for the
first meaningful paint when a site is visited the first time. This will enable an increased
perceived performance. The app shell should contain the following files (points from
[Osm17al):

e HTML and CSS for the skeleton of your user interface complete with navigation
and content placeholders.

e An external JavaScript file (app.js) for handling navigation and UI logic as well
as the code to display posts retrieved from the server and store them locally using
a storage mechanism like IndexedDB.

e A web app manifest and service worker loader to enable off-line capabilities.

This approach adds a major benefit to client-side rendered web applications which, even
though the time till first byte is very low as no preprocessing is needed, have a higher

17

load time for the first meaningful paint as the JavaScript responsible for displaying the
site first have to be loaded and then processed in order to start building the HTML
DOM. For maximum benefits, only resources critical for the initial load should be
included in the skeleton. This topic will be explored more in-depth with the PRPL-
pattern, presented in the next chapter.

3.3. PRPL-Pattern

This section describes the PRPL-pattern which stands for push, render, pre-cache and
lazy-load.

Modern web applications tend to heavily focus on client-side rendering in order to
increase the perceived (and often actual) performance when navigating between dif-
ferent routes. Purely server-side rendered pages reload from scratch when a different
route is visited, causing a white flash which can significantly slow down the experience
of navigating the application, especially compared to native applications. Client-Side
rendered applications can display new routes quickly, as only the content has to be up-
dated, however the downside is an increased initial load. This can be caused by having
to deliver contents for all routes at once or having to include heavy-weight libraries in
order to render the application.

The PRPL-Pattern, developed by Google, is an approach to organize a PWA in a way
that the initial route loads as fast as possible while still gaining the general benefits of
client-side rendered applications. PRPL stands for (taken from [Osm17b]):

Push critical resources for the initial URL route.
Render initial route.

Pre-cache remaining routes.

Lazy-load and create remaining routes on demand.

The goal is to achieve a minimum time to interactive on various devices, especially
mobile device with limited processing/networking power.

This pattern, however, is still very new and still in the process of being tested. There
do not seem to be definitive answers in how to achieve the four above points, however
some suggestions can already be made. Pushing critical resources can be done in two
ways. The first suggests using HTTP /2, which allows multiplexed downloads from the
server|Osm17b|. If e.g. the browser requests an index.html-document, the server will
understand which assets belong with it and automatically respond with the requested
document, as well as any corresponding scripts, stylesheets and/or images. Before
HTTP/2, a browser would only receive the requested document and would then parse
it. Upon parsing, the browser will detect missing resources and will only then make
further requests to the server which further delays the initial page rendering. With
HTTP/2, by the time the browser parsed the document, additional resources may al-
ready finished downloading and thus can quickly be retrieved from the browser cache.
However, since not all browsers and especially not all servers support HTTP /2, there
is an alternative way to minimize the initial requests down to critical resources only.

18

This involves additional tools like module bundlers (more in chapter 4.2) which assist
the development process by only including required assets on each page and combin-
ing shared scripts in an additional bundle so that it can be cached once for the whole
application.

Rendering the initial route can be improved by sending down a server-side rendered
page for a minimum time until first meaningful paint. Ideally, that initial page is pre-
rendered to also size down on the time till first byte.

Further, likely to be visited, routes and their assets can then be preloaded. That way
client-side rendering can be used on those routes without having to wait for the browser
to download and process possibly heavy-weight JavaScript libraries as those have been
preloaded while the user visited the initial route. One way to preload is using the <link
rel="preload "> HTML-Tag which will tell the browser to download a specified resource
when idle. That way the initial downloading of critical resources will not interrupted
and additional routes will be prepared with minimal effect on the browsing experience.
Less important routes can be lazy-loaded on demand in order to minimize the trans-
mitted data for users on an internet plan with limited traffic.

3.4. Web Workers

Similar to service workers, web workers are a specification|Hic15] of a self-contained
JavaScript file, which allow the concurrent execution of JavaScript code outside the
main Ul process. This can be useful when e.g. slow calculations or filtering of large
amounts of data needs to be done on the front-end. While there can only be one
service worker for a site, there is no limitation (aside from technical limitations, due
to available computing resources) on how many web workers are allowed to be active.
Since web workers are detached from the UI process, it does not have access to the
document and window global objects and thus cannot access the DOM at all. Having
access to the DOM would defeat the point of web workers as tight coupling to the UI
process could be reintroduced by the software engineer. This tight coupling would lead
to possibly slowing the Ul down again when taxing operations need to be performed,
and taxing operations are the reason why one would want to offload a task to web
workers to begin with. Instead, data can be exchanged between the Ul process and
web workers by using events. This type of interaction is comparable to message queues
on other platforms where information is exchanged asynchronous.

It is important to distinguish between asynchronism and concurrency in JavaScript.
While concurrency allows processes to run completely detached from the UI thread,
initiating and receiving many asynchronous requests or responses will still affect it. As
an example, AJAX requests are usually referred to as non-blocking calls, since the Ul
does not have to wait for an response to continue processing. However, if a larger re-
sponse is to be received and processed, this can block the further execution of JavaScript
to a noticeable extend. When this happens to the Ul-Thread, it will negatively affect
the perceived performance as the page will start to become unresponsive which will be
most noticeable when scrolling the page or using inputs. As a consequence, even Web
Workers will lose their benefits if large amount of data have to be passed between them
and the UI Thread.

19

Some degree of unresponsiveness is often expected from web applications when com-
pared to native applications. Web workers are one tool to address this and offer a much
more native-feel in order to rise the acceptance of web applications for more complex
tasks.

3.5. Operation System Integration

The previous chapters presented ways to improve the reliability and performance of
web applications. What remained unchanged is the way web applications are accessed,
which differs significantly from native applications. Native applications need to be
downloaded and go through some kind of setup. This can be anything from a dialog
based assistant to manually placing files in the file system. To simplify this process,
most modern operating systems offer an application catalog (often called store or mar-
ket) which present a list of installable applications, often curated by the OS manufac-
turer. Defining factors are an approachable catalog that assists in exploring possibly
useful applications, as well as offering a one-click setup which does not require any
input from the user. However, since not all applications are accepted into the respec-
tive stores, a manual setup still needs to be done on case-by-case basis. Once installed,
applications can quickly launched by most operating systems and are handily available.
Web applications do not go through a setup process by the operating system, instead
they can be directly accessed by entering the URL into a browser. Not all users feel
comfortable going through a setup process as they may not have the knowledge to do
so, or do not trust the software to not do harm on their device or the data associated
with it. In those regards, web applications are more accessible than native applications
since their entry barrier is considerably lower. With the rise of mobile platforms, users
became used to using stores, which grants a similarly lower entry barrier to native
applications. Additionally, once installed, native applications integrate into the under-
lying operation system and can be launched easily. For web applications, even with
consecutive use, the browser has to be launched first and the URL that points to the
web application has to be made available again, either by retyping the URL, visiting a
previously set bookmark or by searching the browser history if present. Once launched,
the web application is still contained within a browser which does not necessarily com-
ply with the design chosen for the application.

Web Manifest is an aiding technology that can help addressing the aforementioned
points to some extent. The manifest allows to specify different properties that define
the way an application looks and integrates by using a JSON-formatted document.
Notable properties in regards to the points mentioned earlier are:

name Full name of an application.

shortname Shorter name to use where limited screen space is available (e.g. smart-
phone launchers).

display Specifies the degree to which the browser Ul is visible. Options are fullscreen
(the web application fills the screen completely, covering OS UI elements like
taskbars, statusbars etc.), standalone (the web application fills most of the screen,
the browser UI remains hidden), minimal-ui (most browser Ul elements stay

20

hidden except navigational ones, varies by browser implementation) and browser
(the web application will be displayed normally within the browser with all of
the browser Ul intact).

description Provides a short description about the application.

background color Tints the initial splash screen that displays just before a web ap-
plication loads.

theme color Tints the browser window (if visible) and possibly other OS elements
like appearance in task switcher (varies by OS).

icons Defines a set of icons for varying screen resolutions, which may be displayed in
an application launcher or task switcher of the OS.

orientation Defines the preferred screen orientation of an application (e.g. portrait or
landscape).

scope Defines the scope (in regards to the URL) where the application operates. Vis-
iting a URL that points outside of the scope can then be launched in an external
browser window instead of leaving the app.

Once created, the manifest file can be linked to an HTML-Document of an application
by adding a link-tag to the document head.

1 <link rel="manifest" href="/manifest.json">

Most of the manifest is ignored until a user "installs" a web application. At the time
of this writing there does not seem to be an accessible way to manually trigger that
process. Instead browsers like chrome try to guess the degree to which a user engaged
with a web application, if engagement is sufficient, an app install banner will be dis-
played which allows the user to install the application. Developers can not instantiate
the banner manually (as a mean to prevent abuse, like popup ads in the past), they can
however delay the display of that banner to an appropriate moment during software
use. During some tests in the Android 6.0.1 OS, sticking the current website to the
start screen would allow for most of the manifest to become active even without the app
install banner. The only advantage installing through the banner would give was the
addition of the web app icon to the software launcher, equal with native applications,
and not to the start screen only, which happens when the user adds a web application
to the Homescreen manually. Doing the latter will however still utilize other prop-
erties of the manifest, e.g. an application will launch fullscreen, with a splashscreen
and separate to the browser application in android’s task switcher view as long as the
manifest says so. This shows that the utility and degree of integration a manifest offers,
ultimately depends on both, the browser and the operating system manufacturer.
Additionally, Microsoft plans to crawl for progressive web applications using their search
engine Bing in order to populate the Microsoft Store with them [Pfl+18|. This will
make web applications further indistinguishable from native apps.

Service Workers also feature a Push API, which allows a web application to create no-
tifications. Since the service worker remains active even without an open browser tab,

21

it is now possible for web applications to notify users much like native applications.
This is utilized by the Twitter Lite PWA, which is able to display rich notifications on
Android that come very close to native app notifications.

22

4. Tooling

Previous chapters have shown which concepts, ideas and technologies are used to build
a modern web application. As more technologies are surfacing, the development process
becomes more and more complex. Users are becoming more accustomed to a richer
web experience which makes it challenging to deliver to all needs, especially as they
become more and more implicit. It is not unusual to start a new web project by first
setting up a complex tool chain - or - use even more tools to do the setup instead. This
chapter will go into detail what types of tools are used and why it can be a benefit
to have them as a part of the development process. The goal is to make the current
JavaScript ecosystem more approachable as it is now. The specifics may change over
time as the JavaScript ecosystem is moving at a very fast pace, which is why there is
more focus on concepts as opposed to products.

4.1. Package Managers

Package Managers allow a separation between developed code and its dependencies.
Not only are dependencies separated, but most importantly managed by the pack-
age manager. This brings multiple benefits to software developers. The actual code
base becomes easy to share as it remains small, this is especially important when us-
ing version control software to keep track of changes or perform rollbacks if needed.
Dependencies will not be checked into the version control system while changes of de-
pendencies can still be tracked by checking in the project-specific configuration file that
is read by the package manager. Another benefit is how the setup of a dependency
is greatly simplified, since the package manager will automatically identify the correct
source, perform the download and resolve new dependencies that the current one may
bring. Finally, it is easy to manage the correct version of a dependency. That way
legacy software can still be provided with outdated, but working, versions of a specific
dependency when the updated version brings breaking changes. The usage of package
managers is a popular practice on many platforms, as shown by tools like maven in
Java, composer in PHP or pip in python.

In the current JavaScript ecosystem there does not seem to be any alternative to the
NPM registry which hosts an constantly increasing amount of dependency packages.
NPM originated from node.js, a platform to run JavaScript applications natively (e.g.
on servers), and used to stand for node package manager. NPM, however, became in-
creasingly popular as a package manager for webapp-specific dependencies (especially
frontend-specific) and thus transcended the intended use of only providing packages
for node.js-based applications. While there is only one notable package registry, there
are different package managers to access that same registry. The first that comes to
mind is npm, the original package manager included in node.js, which used to be the
only one for some time. Another popular package manager is yarn, which also uses the

23

NPM registry but adds caching mechanism and other features to allow sped up use
compared to npm. For this to work, both clients use a package.json configuration file
that keeps track of dependencies. However, todays package managers bring another
task to the table, as they are often also used as a task runner. Those tasks can also be
defined within the package.json and allow have different tasks handy. As an example,
there could be a simple start task that automatically boots up a development server
which keeps track of file changes and reloads the page automatically, a test task that
runs a linter to enforce code guidelines and tests to ensure code quality, or a build task
that automatically bundles, transpiles (more on those in the upcoming chapters) and
minify /uglify the codebase for maximum compatibility and minimum filesize. These
tasks can be freely defined and often launch software that are also comfortably instal-
lable as an NPM package.

One benefit of package managers are maximal code reuse, this is often utilized by
having dependencies that, again, depend on many other dependencies. Those sub-
dependencies often bring in even more dependencies. Installing one dependency is
often comparable to the tip of an iceberg where an unknown number of additional
packages will be downloaded, which takes time and also brings some risks. There has
been one incidents in the past where the NPM package left-pad, a simple module that
allows to pad a given string with spaces or zeros, has been unpublished by the author,
which broke a large amount of other NPM packages that depended on it[Sch16]. No-
table ones include Babel, a very popular JavaScript transpiler that is crucial for many
applications. This has been temporarily solved by another software author claiming
the, now free to use again, left-pad package and uploading their version of a module
that keeps the intended functionality intact. This can be very dangerous as it would
have been possible for someone with malicious intent to claim that NPM package and
inject harmful code in all projects that depend on it. This incident did bring a notable
policy change however, as it is now harder to unpublish a package if this would cause
other packages to break, while also replacing an unpublished package with a place-
holder. That way, the name can only be reclaimed by going through the NPM support
team which judges on a case-by-case basis whether there is a malicious intent.

4.2. Module Bundling

Years ago, websites used to offer very limited functionality and JavaScript code was
limited to only a few lines of code, but as sites became more and more complex, those
JavaScript files increased in size. At that point, having all of the code base in a single
file makes it increasingly less maintainable. The obvious idea is splitting the code base
into many files like it is the case at most other platforms. However, this can backfire
quickly as the browser has to issue an HTTP GET request for every single file that
the code is split into, which will drastically impact the initial loading performance.
It becomes clear that the simple approach of merely using a browser and an editor
for web development is just not appropriate anymore for modern web applications.
The previous chapter touched on the topic of having a package manager to retrieve
dependencies for a project, this is the point where one can capitalize on its second
utility as a task runner. The task that comes to mind is a build step that bundles all

24

of the code base into a single file. To do that, a new tool has to be introduced: The
module bundler.

Anytime the code base changes, one would run a build task that instructs the module
bundler to apply multiple optimizations on the code base to obtain one or multiple
bundled file. An increasingly popular module bundler is webpack, which seems to
become the de facto standard at the time of this writing. It offers many functionalities
beyond merely merging all JavaScript files together. Webpack works with ES6 modules
and imports, so for any given HTML-File it does check which modules are actually
important and builds a dependency tree of all important modules. It then uses a
process called tree shaking to exclude any unused modules or module exports in order
to exclusively bundle the needed code for any given page. Another useful functionality
of webpack is the included development server. Once launched it will keep track of all
source files of a project, if one of them changes it will quickly rebuild the project and
reload the contents in the browser automatically. Webpack supports different loaders
for different file types, which allows it to go far beyond merely bundling JavaScript files.
These loaders allow webpack to also bundle CSS Stylesheets and other files that may be
written in different programming or markup languages, which will then be transpiled
into JavaScript and HTML, respectively (see fig.4.1). Transpiling is not only useful for

js \ .
Jjade \ .coffee 'j S 'j S
ff /
\
.css \ .png) p ng) CSS
/ .less
modules webpack static
with dependencies MODULE BUNDLER assets

Figure 4.1.: Building assets with a module bundlers like webpack|web]

different languages, but also plain JavaScript files as will be touched on in the next
chapter.

4.3. Transpiling

Transpiling is the process of converting code from one language into code from a dif-
ferent language while remaining a similar degree of abstraction [Fenl2|. This is not
to be confused with compiling which takes human-readable code and converts it into

25

machine-readable code, in the context of JavaScript, that would be the job of the
browser’s interpreter. There are multiple reasons why one would prefer to not use
JavaScript in order to develop a web application. One may be that JavaScript is dy-
namically typed, which can be useful as developers do not have to convert between
different types as often, but also introduces a whole class of possible errors. Some
developers may prefer different styles than the typical C-style that JavaScript inherits,
while others just need a more feature-rich language for their use case. However, tran-
spiling does not limit itself to only JavaScript [Jan17|. There are also more feature-rich
alternatives to CSS, like SASS or LESS which introduce variables and declarations for
nested elements on top of many other features. Other Frameworks even introduce their
own extension to known filetypes, e.g. React introduces JSX files [Mill5] that allow a
mixture of JavaScript code and HTML to capitalize on the inherit tight coupling that
view and view-logic already have [Hunl3|. For plain text formatting (e.g. for articles
and blogs), there seems to be an increasing trend of using markdown to style texts, a
declarative language that is already widespread in wikis or README files, which is
then transpiled into plain HTML.

However, not all developers are interested into increasing the complexity of the build
process by introducing transpilers, especially if they may not be familiar with the men-
tioned other languages to begin with. There is still one compelling argument to be made
to still use a transpiler: Browser compatibility. This has been an infamous issue in the
past, where the inability of certain browsers to implement modern web technologies
stunted progressing further in these technologies as a whole. Many useful technologies
took a long time to be adopted, in order to account for those older browsers. Using a
transpiler allows developers to write code in modern ECMAScript 6+ while the tran-
spile process outputs ECMAScript 5 code that will run in most browsers. Poly-fills, to
fill in missing features, will be automatically added by the transpiling process. This
allows developers to adopt modern functionalities today, that would otherwise need to
be implemented by hand which can cause errors and will increase the amount of time
needed.

At this point of time, babel seems to be the de facto standard for any transpiling needs
and can be extended with many different presets for different languages. Babel is used
by many companies that have proven to push the state of web technologies further, like
Facebook, Netflix, Mozilla, NPM, React and many more, to only name a few|Bab].

Part II.

Building Progressive Web Apps

27

This part of the work will attempt to guide through developing a progressive web ap-
plication from scratch. A case study will be used to apply the concepts presented in
the previous part, by building a new application. The first chapter The Case Study,
will go into detail what the current system constitutes and what motivates rebuilding
the application as a progressive web app. Additionally, organizational constrains and
requirements, as well as general requirements for a PWA will be explored, in order to
quantify if the resulting prototype is able to appropriately address the research ques-
tions outlined in the introduction.

The second chapter, Implementing a Progressive Web App, will document how to ap-
proach the development process and which decisions are to be made. Theoretical
principles that have been mentioned in the first part of this work will be applied here.

28

5. The Case Study

The case study is a tool to gain the knowledge required to answer the research questions
that have been stated in the introduction. For this, a closer look will be taken at an
existing legacy system of which a subset of functionalities are to be reimplemented in
the form of a progressive web app. While some requirements are highly specific to
the underlying case study at hand, it does offer a platform to experiment with pwa-
specific technologies and patterns. Requirements relevant to the implementation of a
progressive web app will be highlighted in section 5.2.

5.1. Introducing the CRC806 Database

The Collaborative Research Centre 806 database (CRC806-Database, http://crc806db.uni-
koeln.de) is a web database for scientists of the CRC806 to archive publications,
datasets and other resources that constitute their work.

The CRC806 is funded by the DFG ("Deutsche Forschungsgemeinschaft", a german
research alliance) and spans across different institutions and disciplines. Part of the
cooperation are the universities of Cologne, Bonn, and Aachen, which work together
to research across the fields Geosciences and Geography, Archaeology, and Antropol-
ogy|Will6, P.20].

Paleoenvironmental information is rarely available in reusable GIS (Geographic Infor-
mation Systems) data formats, instead the data is represented in a variety of (struc-
tured /unstructured) formats and (digital/analog) media [Wil+17, P.40]. One of the
main goals of the database lies within making existing information available in stan-
dardized GIS formats, while also collecting, storing, analyzing and publishing these
data for other researchers to use [Wil+17, P.40].

The database gives scientists a permanent place where their work can be referred to, as
well as the ability to acquire a DOI (digital object identifier) which grants a permanent
link that can be used for immutable media like print media. If the actual URL were to
change, this can be reflected by updating the meta data for an issued DOI to ensure
that the DOI-URL will always remain valid.

Additionally, the database allows visitors to explore existing data, many of which are
unrestricted. Upon uploading data, maintainers have to state to which degree their
data can be used, this allows the system to display an appropriate license for any vis-
itor that comes by. A license is a crucial part for others to know whether they are
allowed to use the presented data right away, without having an additional barrier of
contacting the author. The database encourages choosing an open license by applying
a 5 Star Open Data-rating|KH] to all datasets which will be publicly displayed.
DFG-funded projects introduce a time-constrain; Funding happens in phases, with each
phase spanning across four years. Up to four years may be granted for a maximum
total of 12 years funding[Will6, P.20]. As the database is currently in the third and

29

final phase, further development of the database will eventually be suspended. As
server technologies continue to change or grow, the database may become harder to
host, which is largely based on the heavily distributed architecture (see fig. 5.1) of the
current system which introduces many dependencies. Especially front-facing technolo-

i L e e e e R R R

Client web browser

o
P g
: L s 2
{ o] News {Membersf Data 8 Maps =R
i ' w :
¥ e
¥ TYPO3 $ | - O
] ¥ » + 2;< GeoNode + |
Extbase & Fluid ¥) v 2
‘1 :‘..::.:::::.:':.::.:::':.'::'.‘.I ::.".: —
¥ i tgreSQL PostgreSQL 2|
P ' b . ostgre ! ostgre : i
| wmysQu || AFS X v i + ¥
H ¥ 11| PostGIS |i:| PostGIS |i &
| et N .
AFS Client CKAN GeoNode .

RSS [/ ATOM + REST || £39.50 REST %
SSH API AP

Figure 5.1.: Current architecture of the CRC806 legacy system|Wil+4 16|

gies like the underlying Typo3 Content Management System (CMS) may be subject to
future findings of security holes and updating the CMS will likely include some break-
ing changes which need very specific knowledge to resolve. Those factors will likely
endanger continued hosting of the database long after development stopped.

One suggested solution included caching the current application completely in form of
static HTML/CSS files and host those for future access. Adding new data will not be
possible with this approach, but the main concern of the database is the continuous
hosting of the current data, to not compromise on the concept of offering a perma-
nent place to present the uploaded data. This work attempts to iterate on the idea
of transforming the current database to HTML/CSS files and build a progressive web
application instead, which capitalizes on the increased focus on front-end technologies
which may be demanding on the client, but less so on the server-side.

These and other factors create constrains and requirements that are further elaborated
in the next chapter.

30

5.2. Requirements

Proper requirements are an important asset to build a system that will be able to
actually fulfill its intended use. Requirements for the CRC806 Database are collected
through three means:

e Adopting requirements of the current CRC806 Database website [REQ-CRC806]

e Organizational requirements of the underlying institution (University of Cologne)
[REQ-ORG]|

e Best practices for Progressive Web Apps [Gool7c| [REQ-PWA|

The collected requirements are then written out using the template provided by Chris
Rupp et al [RSH09, P.215-245| in order to avoid common linguistic inaccuracies. Fi-
nally, the requirements are categorized into three of the categories provided by the
KANO model (see fig. 5.2) in order to be able to prioritize requirements [Verl4|. To

Satisfaction
Very high! g

Excallant

Execution

FPooar (or noet at all)

Very low!

Figure 5.2.: How basic-, performance and excitement factors will influence satisfaction
based on their execution. Source |[Verl4|

31

avoid further inaccuracies, ambiguous terms are defined in a requirements-specific glos-
sary and if there are synonyms, only the word in the first column is used consistently
in the requirements definitions.

term

definition

SYNOLYINS

web app

A website with emphasis on user interac- | -
tion and performance. Development focus
lies heavily within front-end technologies.
In this context, refers to the system that
is to be developed.

website

A website contains multiple web pages of | -
an institution, providing information within
a browser. In this context, refers to the
current CRC806-Database that is to be re-
placed at a later time by the upcoming web

app.

mobile device

Any device with a working browser but
restrictions regarding screen estate, input
methods, network connectivity and process-
ing power.

tablet

smartphone,

home screen

A UI presented by a fully booted mobile OS

where applications can be launched from.

start
launcher

screen,

5.2.1. Basic Factors

Basic factors are seen as mandatory and do to not directly improve satisfaction. Failing
those requirements will, however, take a large toll on satisfaction. Basis factors often
subconscious and as a result not always completely identified due to that nature.

Requirement Description PWA-
Relevant

REQO001 The web app shall provide users with the ability to view | No
datasets and publications with the respective metadata
[REQ-CRC806]

REQO002 The web app shall provide users with the ability to | No
search for datasets and publications using keywords [REQ-
CRC806]

REQO003 The web app shall provide users with the ability to list and | No
filter existing datasets and publications [REQ-CRCS806]

REQ004 The web app will inherit the URLs from the current web- | No
site in order to keep existing links to the site intact [REQ-
CRC806]

REQO005 The web app shall be able to function with a web server | No
(e.g. apache, NGINX) as the only dependency [REQ-
ORG]|

32

REQO006 The web app shall be able to display datasets and pub- | No
lication data without requiring to load JavaScript assets.
[REQ-CRC806]

REQO007 The web app shall provide users with the ability to view | No
research sites with their metadata [REQ-CRCS806]

REQO008 The web app shall display the location of a research site | No
on an interactive map [REQ-CRCS806]

REQO009 The web app shall provide users with the ability to search | No
for research sites using keywords [REQ-CRC806]

REQO010 The web app shall provide users with the ability to list | No
and filter existing research sites [REQ-CRC806]

REQO11 The web app shall provide users with the ability to view | No
map layers with their metadata [REQ-CRC806]

REQO012 The web app shall provide users with the ability to search | No
for map layers using keywords [REQ-CRC806]

REQO013 The web app shall provide users with the ability to list | No
and filter existing map layers [REQ-CRC806]

REQO014 The web app shall provide users with an interactive map | No
to explore all existing research sites and datasets/publica-
tions that contain location data [REQ-CRC806]

REQO015 The web app shall be served over HTTPS [REQ-PWA| Yes

REQO016 The web app shall be able to provide mobile users with a | Yes
responsive design [REQ-PWA]

REQO17 When accessed offline, the web app shall be able to re- | Yes
spond with a HTTP 200 status code, presenting some
content [REQ-PWA|

REQO018 The web app shall provide users with the ability to add | Yes
the web app to their home screen [REQ-PWA]

REQO019 The web app shall be able to become interactive under ten | Yes
seconds on a simulated 3G network [REQ-PWA|

REQO020 The web app shall work in current versions of Chrome, | Yes
Edge, Firefox and Safari [REQ-PWA]

REQO021 The web app shall be able to provide page transitions in | Yes
order to increase the perceived performance [REQ-PWA]

REQ022 The web app shall be able to provide a unique URL for | Yes

each individual page [REQ-PWA]

5.2.2. Performance Factors

Performance factors are conscious requirements which actively remove dissatisfaction
and have potential to create satisfaction to some extent.

Requirement

Description

PWA-
Relevant

33

PWA]|

REQ023 When used on a mobile device, the web app should be able | Yes
to stay functional and completely usable [REQ-CRCS806]

REQ024 The documentation will provide administrators with a | No
workflow to migrate data from the existing website to the
web app [REQ-ORG]

REQO025 The web app should embed schema.org metadata in order | Yes
to improve the appearance in search engines [REQ-PWA|

REQ026 The web app should use the history API instead of frag- | Yes
ment identifiers [REQ-PWA|

REQO27 The web app shall be able to become interactive under | Yes
five seconds on a simulated 3G network [REQ-PWA]

REQ028 The web app shall use a cache-first caching strategy [REQ- | Yes

5.2.3. Excitement Factors

Excitement factors are often unknown factors that are rarely expected but will directly
increase satisfaction if fulfilled.

Requirement

Description

PWA-

Relevant

REQ029

After the first visit, the web app should be able to provide
the user with basic metadata for datasets, publications,
research sites and map layers without requiring a working

network connection [REQ-CRCS806|

No

REQO030

The web app should present contents in a way that ele-
ments do not jump as the page loads [REQ-PWA]

Yes

REQO31

When the user goes back to a previous page containing
a list, the web app should be able to restore the scroll
position of that list [REQ-PWA|]

Yes

REQ032

When an input is selected that opens an onscreen key-
board, the web app should ensure that the input will not
be covered by the keyboard or another element [REQ-
PWA]

Yes

REQO033

The web app shall inform the user when accessed offline
[REQ-PWA]

Yes

5.3. Architectural Challenges

The current system uses heavily distributed architecture to store and retrieve data. All
the data has to be collected at one point and serialized to function as the input for
the static site generation. Accessing the data sources by themselves does not work as
it does need further processing to resolve relations between those different sources or
to simply refine the data before it can be displayed. Data could still be retrieved from

34

their respective sources and the processing could be reimplemented in an import script,
but it is much more time-efficient to use routines that are already in place in the current
system. Therefore an export interface has to be implemented in the current system to
deliver appropriate sources to base on site generation for the new web application.

A hard requirement for the web application is the display of data without JavaScript
(REQO006), which dictates the need of server-side rendered content in order to dis-
play data even before a JavaScript bundle is loaded or in case JavaScript execution is
blocked. However, in order to successfully implement the app shell model (see chap.3.2
on page 15), for further navigation only the contents should be replaced instead of
reloading the whole page. This demands generation of static pages with traditional
links to other pages if JavaScript is disabled. With JavaScript enabled, these links
should be intercepted and instead new content should be loaded via JavaScript in
order to achieve faster perceived and actual loading times. Perceived loading times
become faster due to avoiding the white flash when the current page unloads and be-
fore the DOM of the new page is loaded. The actual load time speeds up too as only
the actual content has to be retrieved opposed to having to also loading the shell on
every consecutive page load. If pages are loaded dynamically through JavaScript, the
History API[MDN18b| has to be utilized in order to restore browser forward /backward
navigation as expected.

More challenges will likely surface during planning and implementation, starting in the
next chapters, but those mentioned challenges already stand out after a rough look at
the requirements listed previously.

35

6. Implementing a Progressive Web App

The first part of this work attempted to establish basic patterns and practices to build
a modern web application, while this part started out with introducing the case study.
This chapter will apply the knowledge from that first part to the case study in order
to test which practices work well and which do not. In order to do so, this chapter will
reiterate some points from the first part in order to concentrate more on the technical
implementation side, opposed to more general factors that have already been mentioned
in chapters 2 and 3.

6.1. Preparing the Environment

As web development becomes increasingly complex, it becomes harder to build every-
thing from scratch. There is little reason to rebuild a functionality on the side when
there are well-tested and long-standing libraries, build by authors which concerned
themselves with the matter at hand on a deeper level. It can be concluded, that it
is wise to use a package manager to capitalize on the existing JavaScript ecosystem.
For this, Node.js needs to be installed first, which is available for all major operating
systems. Node.js comes with the package manager npm, once that is installed different
package managers could be installed via npm, but for now npm will suffice.

New projects can be started by calling the "npm init" CLI command inside a chosen
directory. A quick assistant will ask for some meta information like project name and
version, but will assume useful defaults if nothing is supplied (e.g. current folder name
as the project name). As a result, a package.json file will be generated containing the
provided information among others in the JSON format. From now on, every time a
package is installed, it will be added as a dependency in that package.json file, while
also downloading it in a folder called node modules inside the project folder. Excep-
tions to this behavior are packages that are installed globally, this is useful for tools
that are not project-specific, which can then be invoked anywhere with just the name
of the binary. Stating an absolute path is not necessary for globally installed packages.
From this point on, additional tools like module bundlers or transpilers can be installed,
but instead a different approach has been used. Since static site generation is a heavy
focus with the underlying case study, the project is initialized by using exactly such a
generator. In this case react-static|Reac| has been used to generate a new project. To
do that, react-static has been installed globally using "npm install -g react-static". In
the next step, a new react-static project is generated by invoking "react-static create"
which will start a quick assistant, similar in scope to the assistant that starts when a
new npm project is initialized. Additionally, the assistant will ask if a template should
be utilized, for this project, the basic template has been used.

Once this setup is finished, react-static will have generated a full project with a pre-
configured module bundler and transpiler among other things. However before going

36

further into site generation with react-static, there needs to be a closer look to the
frontend framework in use, namely react, and why it has been chosen for this project.

6.2. Choosing a Frontend Framework

Web applications in the past had an easy-to-follow program flow, a request is sent to
the server, the server did some processing and answered with the resulting document.
By passing HT'TP POST/GET parameters in the request, the server may answer with
different documents, but the application life cycle always started with the initial request
and ended with a response sent. The downside of this approach is that anytime the Ul
needed to change, a new HTML document would need to be generated by the server
to reflect that Ul change. Especially with forms involved, this can negatively impact
both, the users and the developers experience. Users are interrupted while doing their
inputs in order to wait for the Ul to react and developers have to strictly set all inputs
with the user-provided data again in order to avoid data loss. Nowadays, those tasks
are often handled client-side at the frontend in order to offer a better user experience
and speed up the process for the user.

However, filling out forms is still only a basic task and modern web applications may
need to offer much more demanding UI tasks. Web applications may offer custom
elements, not covered by the HTML standard, to interact with. They may control
audio or video playback or need to offer rich text editing and formatting tools. In
fact, large part of this document have been edited in a web application that offers
formatting tools and generates a continuous live preview during the writing process.
The point is, web applications lost the initially simple program flow that ended once
the page has loaded. They now have to react to many different types of events which
introduces asynchronism to an originally synchronous flow. UI state has to be actively
managed and this can grow into a complex tasks quickly. Frontend frameworks become
a real asset in those scenarios, as they simplify the process by offering specific tools
and forcing a certain style of arranging program code in order avoid typical problems
that may occur in that domain.

There are many frameworks to chose from, which can make it hard to come to a
decision. If the goal is to build an application that needs to be maintained long-
term, maturity of a framework becomes a helpful criteria. The JavaScript ecosystem
is a very fast moving place, if a specific frameworks stays popular for years, it is
safe to assume that it successfully managed to handle most use cases that emerged
within that time. Additionally, a mature frameworks usually went into many iterations,
which may improved it at a finer level than younger frameworks. For this project,
angular[Ang|, react|Reaa| and vue.js|You| have been taken into closer consideration,
which have proven to be among the three most popular frontend frameworks (see fig.
6.1).

Maturity is not the only important criteria though, Jens Neuhaus mentions additional
factors|Neul7|:

e Are the frameworks likely to be around for a while?

e How extensive and helpful are their corresponding communities?

37

Vue. js
v . | - o +40.0k
% A progressive, incrementally-adoptable JavaScript framewo .
R t
C@ eae | - 4278k
A declarative, efficient, and flexible JavaScript library for buildi
Angular .
] b +12 2k
One framework Mobile & desktop
Preact
8'8 . : _ . +10.4k
EJ Fast 3kB React alternative with the same modern APL Com
H
< | | +8.1k
1 KE JavaScript library for building web applications

Figure 6.1.: The top 5 most popular frontend framworks for 2017 [bes17]

e How easy is it to find developers for each of the frameworks?

e What are the basic programming concepts of the frameworks?

e How easy is it to use the frameworks for small or large applications?
e What does the learning curve look like for each framework?

e What kind of performance can you expect from the frameworks?

e Where can you have a closer look under the hood?

e How can you start developing with the chosen framework?

Angular

Angular|Ang]| is a UI framework developed by Google. While the first version of angular
ran in vanilla JavaScript, the newer angular v2 forces developers to use TypeScript
which offers features on top of JavaScript and thus needs to be transpiled down to
JavaScript in order to execute in the browser. This among other changes, made the
current angular in most parts incompatible to angular 1. TypeScript offers a strongly
typed language with features still missing in ES6 like interfaces among others. However,
with ES6 evolving at the pace as it does right now, it is hard to gauge the long term
relevance of TypeScript and if it is worth locking on this dependency. While there does
exist a migration guide from JavaScript to TypeScript, the reverse does not seem to be
the case and transpiled code is not exactly well maintainable. One defining feature of

38

angular is two-way data-binding, which allows to either change a value in code which is
instantly reflected in the frontend, or change a value at the frontend which will changes
the value in code. This does introduce a whole class of possible errors for developers to
make though, and adds a certain degree of complexity when reading code as it is not
always clear how values are changed.

Vue.js

Vue.js|[You| is not quite as mature as the other two Frameworks, but became increas-
ingly popular (see fig.6.1). It is very similar to react as both prioritize performance and
offer a component-based approach (detailed later). It is less opinionated compared to
other frameworks as it allows for both, clean HTML-files with directives as attributes
or HTML-in-JS with their own .vue-files. Directives are a way to allow some logic
in a template declaration, e.g. if there is a list of items from a data source, a list
item and what it contains only needs to be declared once and a looping directive will
ensure that this declaration will be repeated for any amount of actual items. With
a HTML-in-JS approach, developers are free to use native JavaScript functions like
Array.prototype.map() to apply specific HTML to each element of a list of items and
do not need to learn a framework-specific set of directives. A strength of vue.js are
single-file-components that can contain a component’s structure (HTML), logic (JS)
and layout (CSS) at one place. This may seem like a code-smell as software engineers
are used to separate those technologies, however react does make a very strong point
for this approach which will be detailed in the next sub-chapter.

React

React|Reaa] is a frontend framework developed by Facebook which also uses it a lot in
their own products, opposed to angular which Google seems to use sparingly|Corl7].
React was one of the first frameworks that titled angular’s two-way data-binding as a
bug and instead fell back to a more straight-forward one-way data-binding approach
which many other frameworks like vue.js and Ember also adopted. Future versions
of react changed many things under the hood but the api remained mostly the same,
which caused very little trouble when upgrading|Neul7].

React does not allow for the usage of directives, instead native JavaScript has to be
used. To simplify writing HTML declaration, react recommends the usage of JSX files,
which allow HTML in JS (just like .vue files do for vue.js). It is important to note
that JSX is not react-specific and can be used completely independent. Directives in
HTML try to bring JavaScript into HTML, while react brings HTML into JavaScript.
Neuhaus prefers the latter as JavaScript is much more powerful than HTML|Neul7]|.
By mixing HTML templates with view logic, react started to break a long-lasting best
practice, which may sound like a bad idea at first. Software engineers often like to
separate those two with separation of concerns in mind. Pete Hunt describes that term
as "Reduce coupling, increase cohesion" in his talk about react|Hun13| and goes into
detail how markup is tightly coupled and cohesive with display logic and should not be
separated. He further describes a separation of HI'ML and JavaScript as a seperation
of technologies, not concerns. React trusts software engineers to build many smaller

39

components to truly separate concerns instead of separating technologies. The tight
coupling is especially prominent with template engines that offer partials (reusable tem-
plate snippets) as the parent template often has to pass many parameters to the partial
for it to function. Hunt also emphasizes the previous point that template directives
are a less powerful re-implementation of existing JavaScript functions that need to be
relearned for any specific framework at hand. ECMAScript on the other hand, ensures
a consistent, framework-agnostic standardization of JavaScript functions. Additionally,
since the markup is now part of the component, it becomes easier to write tests for.
React use multiple optimizations to increase application performance. The most no-
table one is the virtual DOM, a tree structure of plain JavaScript objects that contain
information like the HTML tagname, HTML attributes and child objects, if any. This
virtual DOM mirrors what the actual DOM consists of. When the application state
changes, a quick check will be performed if any changes have to be performed on the
DOM by checking the virtual DOM first. Instead of re-rendering the whole DOM, only
the parts that change will be re-rendered. Additionally, if multiple DOM changes need
to happen, react is able to apply all at once. This is important because changes on
the real DOM will cause the browser to recalculate the whole page layout, which is a
rather costly task. Applying changes as a batch, will minimize the number of times,
this task is carried out, resulting in an increased performance. Another trick is applied
in the way JavaScript events are bound to elements. E.g. if a table contains many rows
with buttons, instead of binding a handler to each single button, react will instead bind
only one click-event to the whole table and delegate the event to the respective button
internally.

Conclusion

Ultimately, the decision depends highly on the requirements for the application that is
to be developed. Out of the big three (angular, react, vue.js) all of them will be able to
build rich interfaces in little time. Angular offers a more complete package, as it also
takes care of other demands, not specific to the Ul, like routing. However, that also
makes angular more opinionated, as it covers a larger part of the architecture which
may increase the hurdle of replacing specific parts with other implementations. This is
also apparent with the hard requirement of using TypeScript and adopting a specific
folder structure, whereas the other two frameworks are less restrictive in that regard.
Performance-wise, all three will be quite comparable, with angular having a slightly
higher memory footprint than the others (see fig. 6.2). The difference is usually not
notable enough to impact the decision making though.

Vue and react both offer an optional way of using HTML in JS (via .vue or JSX files)
which allows developers to use mostly standard-conform HTML (with few exceptions)
which is easier to be understood, maintained and extended by designers that may be
more familiar with HTML than the ever-evolving pool of JavaScript libraries. Vue
also offers the usage of directives in HTML, similar to angular, to allow JavaScript
in HTML, which is less powerful and also forces developers and designers to learn
framework specific directives.

For the time being, react has the broadest ecosystem which offers multiple solutions

Duration in milliseconds £ standard deviation Memory allocation in MBs + standard

(Slowdown = Duration / Fastest)

react- amgular-
Name \r1 6.1 1]— vﬁ . f.]'—

create rows
Duration far creating
1000 rows after the
page loaded.

replace all rows
Duration for updating all
1000 rows of the tabls
jwith 5 warmup
Itarationz).

wue-v2.5.3-
keyed

partial update
Tima to update the bext 1881 274
of @vary 10th row [with
5 warmup Iteratione) for)
a tabils with 10k rows.

select row
Duration to highlight a
row In respones ta 3
click on tha row. [with 5
warmup lterstions).

SWAP rows
Time to ewap 2 rows on
2 1K tatsa. (witn 5
warmup lterations).

FEMove row

Duration to remove a

rove. (with 5 warmup
Itarationz).

create many rows
Curatlon to create
10,000 rows

append rows to
large table
Duration for adding
1004 rows on & table of
10,000 rows.

clear rows
Duratian to claar the
table Mied with 10.000
rows.

startup time
Time far leading,
parzing and starting up
slowdown
geometric mean

deviation
react- angular-
Name vIEAD- | v5.0.0- """:*2:‘3'
keyed keyed =¥

ready memory B.7 +£0.1
Mamory usags after
page load.

run memaory
Mamory usags after
adding 1000 rows.
update eatch 10th
row for 1k rows (5
cycles)
Mamary usags after
clicking updats svary
10th row 5 times
replace 1k rows (5
cycles)
Mamary usags after
clicking craate 1000
rows 5 imes

creatingfclearing

1k rows (5 cycles) 7.1 200
Mamary usags after (1)
creating and clearing

1000 rowe 5 times

Figure 6.2.: Performance and memory footprints of angular, react and vue.js [Kra|

for most use cases|Rai+|. Vue’s ecosystem is, however, also becoming increasingly
larger[Vue]. Angular’s ecosystem seems to be the smallest, but that is to be expected
as it comes with more features out of the box[Sta+|. All three frameworks have solutions
to generate documents via server-side rendering, which is a requirement for the case

study.

Finally, this work will use the popular (see fig.6.3) react framework, for its simpler

41

one-way data-flow, the more powerful approach of embedding HTML in JS (which vue
also offers) and lastly, to capitalize on the large ecosystem and support available.

[—1 @angularicore react [vue

2500000

2000000

1500000

1000000

=i L]
—0-0—=0=0=p"" g

/

]
== gp_ g

500000

Figure 6.3.: Amount of NPM installs between angular(blue), react(orange) and
vue(green) [Pot]

6.3. Static Site Generation

One hard requirement of the case study is the generation of static documents for min-
imal server-side dependencies to ensure continued hosting. Making data available for
others to access is one of the most important traits any database should possess. This
also applies to the CRC806 database, where data should stay available with as simple
means as possible. While this approach does not work for all progressive web apps, it
has advantages for any route where content rarely changes.

The advantages and disadvantages of server-side rendering and client-side rendering
have been explored previously in chapter 2.3 (P. 10). A static site can potentially
merge the advantages of both approaches while mostly removing the disadvantages.
Static sites will be pre-rendered before the site is published, this minimizes the TTFB
(time till first byte) as no processing needs to be done anymore when the site is accessed.
Additionally, pre-rendering takes care of creating an initial DOM instead of dynami-
cally rendering the DOM after the page and JavaScript bundle has been downloaded,
processed and executed by the browser which lowers the time until a site becomes view-
able. With this, a static site becomes viewable almost instantly, even while frontend
frameworks may still be loading in the background. Once the framework is loaded,
events can then be attached afterwards to the pre-rendered components to make the
site interactable - React calls this process hydration. The react-static framework|Reac]
illustrates this approach further (see fig.6.4). There are many static site generators
available to chose from|Netb]|, but for this project, the generator should ideally sup-
port react out of the box to build on top of the previous frontend framework decision.
Additionally, the static site generator should be JavaScript-based for two reasons: The
existing JavaScript ecosystem (NPM) can be used to install/update the generator,

42

Page
Initial Page +/ Content Visible
Requestg SIS +/ Basic Interactivity
100ms - 100 kb +/ Crawlable

2

React Mounts 0.l |/ Fullinteractivity

300ms - 200 kb

N2

Page
Subsequent
Site +/ Instant page load
Navigation +/ Preloading
50ms ~ 2 kb

Figure 6.4.: Page is viewable upon the initial request, after react loads, the page be-
comes interactable [Real8|

without introducing new environments that need additional setup. Also, less docu-
mented parts of the generator can be understood and edited, if necessary, using the
same language (JavaScript) that is used throughout the project.

At this stage, there are only few frameworks available, most notable are Gatsby, React
Static and Phenomic among very few less popular ones. Phenomic has been dismissed
for now, as it is still in an alpha state at the time of this writing. Gatsby seemed to
be an obvious choice as it went to many iterations and is used by many sites - among
them even reactjs.org itself. One specific trait of Gatsby is its usage of GraphQL to
query data from external sources, which is in turn used to populate pages with their
respective contents. GraphQL is a querying language for APIs with one of the key
feature being that specifically only the requested data will be delivered. This is very
similar to projections in SQL, where only the requested fields are returned. With this,
GraphQL presents intriguing benefits for load and processing time, but it also intro-
duces an additional layer into the stack, where data has to be exported from the legacy

43

system, imported into a GraphQL endpoint which makes the data available, yet again,
to be imported into the actual static site generator (Gatsby).

This overhead motivated to take a closer look into React Static, a site generator that
has been build with these among other issues in mind|Lin17|. React static is less opin-
ionated in when it comes to the way in which data is supplied. Any technology can
be used to retrieve the data (e.g. REST, GraphQL, SQL, local files) during the initial
build time, which will then be passed down to the underlying routes. Automatic data
splitting ensures ideal bundling of this data. E.g. if specific data is used on multiple
routes, an additional bundle will be created that is loaded on those routes, if data is
used globally, it will be moved to the global bundle that is used by all routes. This
module bundling is done with the help of webpack which other static site generators
like Gatsby also rely on. All routes are defined in a configuration file (static.config.js).
Generating routes dynamically from data is as easy as retrieving them with a tech-
nology of choice, iterating through them and applying a route configuration (this is
usually done via Array.prototype.map()). And example of this can be seen in figure
6.5, where a static route (/datasets) is defined first, a page where a list of all datasets
is displayed. Followed by that are many detail pages for each single dataset. Those
routes (/dataset/show/<datasetname>) need to be dynamically generated by iterating
through the available data. Each route needs to be supplied with one React compo-
nent that determines how that route is rendered. These React components may be
use more components as their children. When building the site for production, React
Static will actually generate many folders that exactly match the provided paths in
the static.config.js. For valid routes, an index.html will be placed in the folder which
contains the pre-rendered DOM for that route as well as the bootstrapping JavaScript
that will load React to enable client-side routing. This means that from that point
on, only route specific data will be loaded and then replace the current route’s content
instead of reloading the whole page. This is comparable to the App Shell model, where
only the contents are loaded via AJAX while the skeleton remains. If JavaScript is not
enabled, the site will navigate to the other generated routes as normal, ditching the
current route and loading the next route from scratch.

React static proves to be an appropriate tool for this case study, not only because it
seems to work well for the most part, but also because it addresses many explicit and
implicit requirements of a progressive web app. It is build with the PRPL pattern
in mind (this is also true for Gatsby): Webpack uses code splitting and tree-shaking
to ensure that only critical resources are loaded on a given route. All routes are pre-
rendered to make them instantly viewable even before React loads. React Static uses
its own Link component to create links to other pages, unless specified differently, data
for these routes will be pre-cached after the current route has finished loading to speed
up further navigation. Finally, pre-caching can be turned off for data-heavy routes, or
alternatively, data can be lazy loaded via AJAX for specific routes. These points allow
React Static to hit all the check boxes suggested by the PRPL pattern. The usage of
webpack and its devserver also enables a positive developer experience as it features
Hot Reloading. The webpack devserver will watch for any changes that may happen
within the project files, if changes are detected, webpack will retranspile the affected
files and its dependencies to then only reload the affected component on a page. This
relieves the developer from having to refresh the page manually on each change, but

11

13

15

17

19

21

23

25

27

44

// importing data from file system,

// but any technology can be used for retrieval

import datasets from
'./src/tx_unikoelncrcdata_domain_model_dataset. json'

export default {
getRoutes: async () => {
return [

{
path: '/datasets',
component: 'src/containers/Datasets',
getData: () => ({
datasets: datasets,
1))
i
{
path: '/dataset',
children: datasets.map(dataset => ({
path: “/show/${dataset.namel}",
component: 'src/containers/Dataset',
getData: () => ({
dataset,
},
),
}

Figure 6.5.: Simplified section of static.config.js, where data is passed down to routes

also from having to reinitialize the state the UI has been before.

There are still some caveats to have in mind when using static site generation with
React. When developing for the front-end, libraries may be used that need to access
the DOM or other browser-specific objects. These libraries are usually available via
NPM, however if they are to be imported like usual (at the top of a file), this will
cause errors during site generation. This is because React Static generates the routes
server-side via node.js. At that stage, no browser exists and accessing browser specific
objects like document or window will cause the build process to fail. There are multiple
ways to solve this. One way could be stubbing the missing objects during the build
process, but that may cause subsequent faults as the stubbed methods may not return
the expected data. The most success has been had by using require instead of import
and only using it in a scope that will be executed when run in a browser. Import only
works on ES6 modules which, on their side, use export to expose certain functionalities
(see chapter 1, P.XIV). Require, is a node.js-specific way to load modules which do not

45

quite follow the exact syntax of ES6 modules but have a similar approach. The require-
specific module syntax is often used by pre-build JavaScript libraries that are meant
to be included directly in a production site without further processing by a transpiler
or similar. In the case of React Static, external libraries which access browser-specific
objects need to be pre-built as the site generator will not be able to build them by
itself. React Static speaks of node-safe code|Real8|, which describes code that is able
to fully run in a headless (a.k.a. no browser involved) node.js environment. When
using React components, there are two scopes that have proven to only be executed
in a browser-environment: The componentDidMount()-hook and the render()-function.
As the render function is executed every time the state significantly changes, it does
not pose to be a appropriate place to import a library - a process that is only meant
to happen initially. This is where componentDidMount() proves to be useful as it is
only executed by React once the component did successfully load and before any ren-
der function (that may depend on a specific library being available) executes. It is
important to have this issue of using external, browser-dependent libraries in mind as
it is very possible to spend a lot time on building and polishing the look and feel of a
site, using the provided devserver, only to realize near the end that the build process
fails and deployment is not possible. It is recommended to test the build process every
time a new library is introduced to make sure everything works as expected. Another
issue to keep in mind is that React Static is still in heavily developed, which can re-
sult in breaking changes when updating this dependency. On rare occasions updates
have introduced breaking bugs, but those have been resolved very quickly on most
cases. Additionally it is always possible to downgrade to an earlier version from NPM
if needed.

6.4. Importing the Data

The current CRC806 Database uses data from many different sources, this data is often
intertwined which was one of the main causes of long load times as all the necessary
data for a route has to collected upfront from different systems which all introduce
their own latencies. The purpose of this chapter is finding a strategy to import all of
the existing data in a useful way. However, first a closer look at the data at hand to
get a better idea about their specific needs.

Publications and Datasets A publication or dataset describe the same entity in the
underlying database which are merely tagged differently, it is even possible for this
entity to be listed as both, a publication and a dataset. This is the primary data that
has been provided by the users of the database and each entry presents a specific piece
of work that scientists want to share with others. Publications and datasets contain
many different types of values, from basic textual or numeric data to temporal and
spatial data, as well as related data. Temporal data refers to either an specific event or
interval in time, while spatial data describes either a point or a rectangular area of the
world. Related data possibly contains other publications/datasets, but can also refer
to Layers or Sites, which will be detailed in the next paragraphs. This data is mostly

46

hosted using a CKAN database[CKA], but due to technical limitations, relations to
other data is additionally saved using a MariaDB[Mar|, a MySQL-fork.

In order to export the data, an export interface has been implemented at the legacy
system. This way we can reuse the mechanism that join the data from their respective
sources and refine them. Refining contains further processing like correctly formatting
Authors according to bibtex standard or building a citation string with consistent rules
across all publications and datasets. Reusing the mechanics in place seems to be the
best way to retrieve results that are consistent with the current data of the legacy
system. A remaining challenge will be dataset resources as those vary in accessibility.
A possible strategy could contain using the post-build configuration of React Static,
which allows to automatically do additional tasks if building was successful. Such a
task could decide which resources are meant to be publicly available using the provided
data and then only copy those to a static folder.

Layers Layers present georeferenced raster data that is rendered on an interactive
world map (see fig.6.6). In order to correctly retrieve imagery for each zoom level,
a WMS (Web Map Service)]OGC]| is queried via REST. The WMS standard offers
an optional getLegendGraphics function which allows the web application to display a
legend in the bottom right corner if available. Examples of raster data may include
elevation maps and climate data among others. The WMS endpoint is provided by

Stat Data Publications QEUELEM Sites Services About Imprint CRCB806 Members

KOEPPENGEIGER LGM
CLIPPED

e

Meta Resources

This geospatial dataset, is a Koeppen-Geiger
climate classification of the MPI-ESM-P Last
Glacial Maximum (21k yBP) riiipi mode!

s according to the PMIP Il LGM

. The classifications were computed
g the Python pyGRASS library and GRASS

Type: Vector Data
Category: Envirenment

Keywords: (L6M| (KasppenGeiger) [palsocimate | [21k|

| simulation|

Publication date: 2014-12-10

Figure 6.6.: Detail view of a layer in the current web application

a GeoNode|Geo| instance that is currently hosted by the university of cologne. Since
GeoNode needs to be queried interactively, data can not simply be exported as JSON.
One could attempt to fetch all generated imagery for all zoom layers which could then
be reused for the generated web application, but this brings more challenges. The

47

frontend library that is used for map visualization (Leaflet|Aga+]) expects WMS (Web
Map Service), TMS (tile map service) endpoints or similar, which it will then query
autonomously. If such an endpoint fails to exists, heavy customizations need to be
done in order to reuse manually exported data instead. As a consequence, Layers will
not be available in the new web application, as relieving the data from server-side
dependencies will leave the scope of this work.

Sites Sites pose a collection of research sites where publications, datasets or Layers
may originate from. Sites contain mostly meta data that describes name, purpose and
images of a specific research site. Additionally a spatial point is provided in order to
show the location of the research site on an interactive map (see fig.6.7).

As research sites are completely contained within a MariaDB instance and no further
joining of different sources is required, sites can be dumped directly from MariaDB
without requiring a specific export interface to be implemented on the legacy system.

Ardales

Q cave M geoscience, archaeclogy, other € E -4.828639, N 36.873377

Description

Ardales Cave (Malaga, Spain) is a prehistoric site near the village Ardales. The cave
has two floors and is approximately 1,5 km long. One of the first caves open for tourism
it is known since the first half of the 19th century. During the Neaolithic period, the cave
was used as burial ground; human remains, ceramics and lithic tools can be found on
the surface of the cave floor. At the beginning of the 20th century, Upper Palaeolithic
and Neolithic cave art was discovered by Henri Breuil, consisting of engravings and
paintings from mainly horses and deer, some human representations and signs

After a first campaign in 2011, when four areas of the cave were excavated and a set of
analysis were carried out to get a first impression of the surroundings, a more exiensive
excavation project is undergoing since 2015. A team of German and Spanish
researchers from the University of Cologne, Neanderthal Museum and University of
Cadiz is conducting excavations in three zones of the cave (Zona 2, Zona 3, Zona 5).
The objectives are to document the well preserved { W of the cave, L

the sedimentation processes, and find a connection between archaeological layers and
human traces that Upper Palaeolithic people left behind while exploring the underground
and decorating the cave walls. These internal analyses of the Ardales cave are
imbedded in the search for pattern which will give insight into the role and the function of
caves with rock art in the settlement system of Upper Palaeolithic foragers in Southern
Spain. Against the backdrop of the complete absence of contemporaneous cave art in
Morocco these studies are of essential impartance Photos

Campaigns

1st campaign (2011)

geoarchaeological sondage with gecradar and microcoring to investigate the ground in
front of the cave entrance and archaeological sondagss in four different areas of the
rave (7ana 4 2 A and 4)ia n and

Figure 6.7.: Detail view of a specific research sites in the current web application

48

Most strategies come down to finding the point where all required data is joined and
complete, followed by exporting them. When talking about exporting, the format used
is JSON as this can be imported directly into JavaScript projects without any additional
libraries that require slow parsing steps. Instead JSON.parse() can be used which is
native to JavaScript and thus executes faster than manual implementations. The legacy
system is PHP-based which also has fully functional, native support for the JSON for-
mat and allows easy exporting of arrays and objects using the json_ encode()-function.
Finally, PHPMyAdmin - an administration backend for MySQL or MariaDB databases
- also allows directly exporting SQL tables using the JSON format (see fig.6.8).

This is very similar to the JAMstack architecture, which describes itself as a "Mod-
ern web development architecture based on client-side JavaScript, reusable APIs, and
prebuilt Markup"[jam]. JAMstack is a technology-agnostic architecture, that requires
three key-factors|[jam]:

(J)avaScript Any dynamic programming during the request/response cycle is handled
by JavaScript, running entirely on the client. This could be any frontend frame-
work, library, or even vanilla JavaScript.

(A)PIs All server-side processes or database actions are abstracted into reusable APIs,
accessed over HT'TP with JavaScript. These can be custom-built or leverage
third-party services.

(M)arkup Templated markup should be prebuilt at deploy time, usually using a site
generator for content sites, or a build tool for web apps.

As JAMStack is technology-agnostic, it is not specific to progressive web apps but can
be applied to any kind of web application. Differences from JAMStack to the presented
approach apply to APIs. Since server-side dependencies need to be removed completely,
there will not be any API that can be queried directly. However, with the combined
exports mentioned, multiple JSON documents will be generated that mimic possible
API responses from various endpoints. As this data will be static and does not need to
change while the application is deployed, the data will directly feed into the generation
of the prebuilt documents instead of retrieving the data from scratch on each page
load. This will ensure that contents are available instantly upon loading the HTML
document, even before JavaScript files are downloaded and processed.

6.5. Making a Responsive Layout

One major benefit of web applications in general is the ability to address virtually any
device with a web browser. In order to capitalize on that opportunity, developers need
to take care of varying screen sizes, input methods and network availability. While the
issue of network availability is mostly handled with the usage of caching strategies (see
the next chapter), a responsive layout should keep the first two in mind. Originally,
the first bare-bones, plain-HTML websites have all been responsive as no layout rules
(Cascading Style Sheets) have been in place that limited how far content elements span.
However, with no or minimal CSS rules in place, there is barely any conscious design
to address usability concerns or corporate identity.

49

Database

CRC806
-
¥ ckan Database

Database <> Models ¢———> Controllers

PHPMyAdmin
Export (JSON) Custom Export Interface
(JSON)

MariaDB

JSON-Documents

(Datasets, Publications, Researchsites)

‘“’p":c"k‘.i‘i’d“e”?)b/
@Reaet Static 5 v —> gma

via ,npm run build“ use bundler use transpiler
Webpack
generate Service

Worker

Deployable via FTP, SCP,
etc.
|u Workhox ﬂ -_— Does not need any server-
—_— side technologies apart from

— a simple webserver

Progressive Web App
(Static HTML, JS and CSS Files)

Figure 6.8.: Overview for the technologies used and how they interact with each other
in this case study example. Images belong to [CKA], [Mar]|, [Reac]|, [web],
[Bab| and [Con]| respectively.

In order to accommodate varying screen sizes, modern web applications often use re-
sponsive grids where columns may break into rows in order to ensure readability of
content elements on smaller screens (see fig.6.9). This is done by using media queries,
which allow to specify CSS rules for certain media types and media features|W3Sal.
However, in most cases the media type is omitted (defaults to all) and for the purpose

Figure 6.9.: A responsive grid that automatically falls back on varying screen sizes.
Source: [Wik18|

of responsive grids, only the media features min-width and maz-width are usually taken
into consideration. For touch-screens, it is important that the pointer-event hover can
not be used for important Ul components like e.g. a navigation with child elements that
only becomes visible on hover. For those cases, alternatives are needed, like opening a
sub-navigation via click (touching an element briefly will issue a click-event).

For the case-study, the CSS library UI-Kit|UIk| has been used as it comes with a grid
system among many other Ul components. Reusing those components makes sure that
the web application has a consistent look for the most part. There are many other
Ul frameworks to chose from, and while there are objective criteria like bundle size
to ensure quick load times, most of it comes down to taste. Bootstrap as an exam-
ple is very popular, but unless the components receive custom theming, there is the
danger that different bootstrap sites may look similar. This can happen with many
UI Frameworks, however some others may only focus on very basic aspects that are
less obvious to observe. Example are frameworks like skeleton|Ske| or simplegrid|Col+|
which contain only very basic styling combined with a responsive grid system.
Alternatively, since the CSS flexbox became mature enough to be used in produc-
tion|Iril8], it is absolutely viable to not use a CSS library to begin with, as flexbox

o1

combined with media queries allow for an easy and flexible way to build a custom grid
system.

6.6. Implementing Caching Strategies

Caching strategies are a way to deal with unreliable or missing network connections.
This is not to be confused with the usual browser cache as it will usually only cache
certain assets, not the root document that enables the initial display of a web site to
begin with. As discussed in chapter 3.1 (P.14), service workers are the only way for a
web application to exist outside the browser tab. More importantly, the service worker
is able to cache files, intercept any fetch-event from the browser and respond with data
from that same cache instead.

To chose a proper caching strategy, an observation needs to be made which assets or
routes need to be up to date at all times, which assets merely need to be updated
eventually, and which assets are unlikely to ever change. The case study describes a
read-only database system that is meant to archive the data that is currently in the
legacy system for an undetermined time. Once the switch is made, it is very unlikely for
the data to ever change again, which is why a more aggressive caching approach can be
chosen. The service worker chapter mentions the strategies "network or cache", "cache
only", "cache and update", " cache, update and refresh" and "embedded fallback". With
currentness of the data being less of a concern, "cache only" and "cache and update"
are appropriate candidates for a caching strategy. Both will , once the service worker
did cache successfully, offer almost instant loading of resources, which is one major
gain of using caching strategies to begin with. However, in order to be safe, if changes
do happen, the strategy "cache and update" is preferred for this case study. Response
times will still be near instant, but if a resource does become outdated, it will be up to
date again on the next visit.

Implementing a caching strategy from scratch can prove to be a big challenge, while an
incorrect implementation may also cause a state where the web application is unable
to update itself anymore until the service worker is unregistered|Pop17|. Unregistering
a service worker is not a simple task for average users as it often involves opening
the developer tools of the browser in use which deviates strongly from the activities
involved when normally using the web. To avoid those issues, it is recommended to use
additional tools to implement caching strategies. At this point in time workbox seems
to be the only available tool for this task|[Con|. Workbox allows to assign a caching
strategy on multiple resources at once using a wildcard syntax. It is also possible to use
multiple strategies for different resources at once. There is a workboz-cli to automat-
ically generate a basic service worker as a basis to start working with. Alternatively,
workbox can be integrated into webpack in order to automatically generate a service
worker with the bundles in mind that are generated by webpack. Unfortunately any
attempts to use workbox this way have been unsuccessful. For this implementation, the
workbox-cli has been used instead. By extending the "build" run script of npm, a new
service worker is generated on each new build. This is necessary as webpack outputs
assets that contain hashes in their names, which change on each build. By supplying

92

a configuration file, workbox-cli will automatically discover all assets in the webpack
output folder and pre-cache these files. An initial configuration file can be generated
by calling "workbox-cli wizard", which will start a short wizard with helpful defaults.
Pre-caching will attempt to retrieve resources while network load is low, in order to not
slow down load times of critical resources for the current route. The way pre-caching
works in workbox ensures that new revisions of an asset will automatically be picked
up and cached, so if any specific file were to change, generating a new service worker
will automatically take care of updating the cache|Wor|. There have been issues where
a new service worker would not activate and instead remain in waiting status indefi-
nitely. This has been resolved by setting the skip Waiting variable inside the workbox
configuration file.

Part III.

Evaluation

o4

7. Evaluation of Progressive Web
Applications

This chapter will attempt to evaluate different aspects of progressive web applications.
First, a closer look will be taken on the requirements stated in chapter 5.2, in order
to see which requirements were easy or challenging to fulfill and which requirements
could not be fulfilled at all. Second, an assessment about current practices will be made,
factoring in the experiences that have been made throughout the implementation phase
of the case study. Followed by a short analysis on web applications in general in order
to be able to judge their viability compared to native applications. The goal of this
chapter is to analyze and evaluate on the aspects that have been outlined up to this
part to prepare for the final conclusion in chapter 8.

7.1. Requirements Coverage

This chapter will revisit the requirements identified in chapter 5.2 in order to gauge
which practices have been helpful in achieving those requirements, and which require-
ments remained challenging. For this, basic, performance and excitement factors will
be checked to determine the exact coverage of the requirements in each category. Once
the coverage has been identified, requirements that have been proven to be notably
easy or challenging to implement using the practices mentioned throughout this work,
will be elaborated.

7.1.1. Basic Factors

Requirement Description PWA- Covered
Relevant
REQO01 The web app shall provide users with the | No Yes

ability to view datasets and publications
with the respective metadata

REQ002 The web app shall provide users with the | No Yes
ability to search for datasets and publica-
tions

REQO003 The web app shall provide users with the | No Yes
ability to list and filter existing datasets and
publications

REQO004 The web app will inherit the URLs from | No Yes
the current website in order to keep existing
links to the site intact

95

REQ005

The web app shall be able to function with
a web server (e.g. apache, NGINX) as the
only dependency

No

Yes

REQ006

The web app shall be able to display
datasets and publication data without re-
quiring to load JavaScript assets

No

Yes

REQ007

The web app shall provide users with the
ability to view research sites with their
metadata

Yes

REQO08

The web app shall display the location of a
research site on an interactive map

Yes

REQ009

The web app shall provide users with the
ability to search for research sites using key-
words

REQO10

The web app shall provide users with the
ability to list and filter existing research
sites

REQO1L

The web app shall provide users with the
ability to view map layers with their meta-
data

REQO12

The web app shall provide users with the
ability to search for map layers using key-
words

REQO13

The web app shall provide users with the
ability to list and filter existing map layers

REQO14

The web app shall provide users with an
interactive map to explore all existing re-
search sites and datasets/publications that
contain location data

REQO15

The web app shall be served over HT'TPS

Yes

REQO16

The web app shall be able to provide mobile
users with a responsive design

Yes

Yes

REQO017

When accessed offline, the web app shall be
able to respond with a HTTP 200 status
code, presenting some content

Yes

Yes

REQO18

The web app shall provide users with the
ability to add the web app to their home
screen

Yes

Yes

REQO019

The web app shall be able to become inter-
active under ten seconds on a simulated 3G
network

Yes

Yes

REQO020

The web app shall work in current versions
of Chrome, Edge, Firefox and Safari

Yes

Yes

o6

REQ021 The web app shall be able to provide page | Yes No
transitions in order to increase perceived
performance

REQ022 The web app shall be able to provide a | Yes Yes
unique URL for each individual page

The total coverage of basic factors is 68.2% (15/22).
The total coverage of PWA-relevant basic factors is 75% (6/8).

The challenging part about making all previous data available (REQO001) lies mostly
within implementing an export endpoint within the legacy system. With the data avail-
able, it is rather easy to generate all the required routes, using react-static. By gener-
ating folders for all possible routes, react-static ensures that there will be a static in-
dex.html waiting behind any route, without any server-side routing required (REQ005).
With disabled JavaScript, client-side routing through react will not work, but since all
links point to static documents, routes will still resolve (REQ006). The performance
gain of replacing contents via AJAX will be lost though, as instead, the whole page
will reload. The global search (REQ002) has been implemented using a Web Worker so
that searching through large amounts of data will not reflect on the Ul thread. How-
ever with the amount of data in this case study, there have not been any noticeable
performance gains, as both the legacy search as well as the new search perform very
fast. A reoccurring use case across the web application is the need to display location
data on a map (REQ007, REQ008, REQO011). This can either be a point or a rect-
angular area. To avoid rewriting functionality over and over, a react component has
been developed to display a map via leaflet|Aga+]. This component has been reused
to display the spatial information for datasets or displaying the location of a research
site. Additionally, there is an advanced use case for displaying multiple points/areas
on a large map (REQO014). Goal of that map is to explore all existing data with spa-
tial data attached. When multiple points/areas are in close proximity, they shall be
clustered as one point with a visual distinction to regular points. To implement this
cluster-map, a new react component has been created that extends the existing map
component. This came with a big caveat, as react does not encourage inheritance be-
tween components, instead, react recommends composition over inheritance|Reabl. As
a consequence, clustering needed to be supported by the core map component, while the
clustermap component merely pre-setted the required properties, while also adding a
few more HTML elements to display information about a selected cluster. Inheritance
would not work well either way, as the whole component structure is defined in the
render-method of a component. Any component inheriting from a parent component
would either have to completely accept the structure or override the render method
and re-implement the structure from scratch. This creates the possible danger of react
components having to grow very large, just to support multiple functionalities, whereas
a parent component merely presets those components to fulfill a more specific role.
Support for listing /viewing map layers (REQO011, REQ012, REQ013) had been dropped
completely as there is no feasible way to simulate an geonode endpoint without server-
side dependencies.

o7

Basic support for mobile devices (REQO016) has been easy to achieve by using a grid
system chapter (see 6.5 for more details).

By only bundling required assets via webpack, the web application loads within eight
seconds (REQO019) from scratch (emptied cache) over a simulated 3G network (simu-
lated via chrome devtools).

7.1.2. Performance Factors

Requirement Description PWA- Covered
Relevant
REQO023 When used on a mobile device, the web app | Yes Yes

should be able to stay functional and com-
pletely usable

REQ024 The documentation will provide adminis- | No No
trators with a workflow to migrate from the
existing website to the web app

REQO025 The web app should embed schema.org | Yes No
metadata in order to improve the appear-
ance in search engines

REQ026 The web app should use the history API | Yes Yes
instead of fragment identifiers

REQ027 The web app shall be able to become inter- | Yes No
active under five seconds on a simulated 3G
network

REQO028 The web app shall use a cache and update | Yes Yes

caching-strategy

The total coverage of performance factors is 50% (3/6).
The total coverage of PWA-relevant performance factors is 60% (3/5).

The web app uses mostly relative sizes and avoids absolute positioning for the most
part. When absolute positioning is used (e.g. for the search) the affected element
pans upon the whole screen, which works well for desktop as well as mobile screens
(REQO023). Scrollbars are added automatically through the CSS overflow property to
ensure that contents are reachable even if they do not fit the screen bounds.
React-Static automatically utilizes the history API to simulate static URL paths (REQ026)
without any manual implementation steps needed.

On first load, the web app repeatedly takes around eight seconds to load the initial
resources on a simulated 3G network, with the global JavaScript bundle being the worst
offender as it takes seven seconds on average. Upon further inspecting the bundle, it
becomes apparent that react-static embeds meta data of all datasets into the main
bundle, which makes up most of its file size. It is not clear why react-static promotes
that data to the main bundle, as the data is only supplied to certain routes. This may
prove to become a problem for sites with larger amounts of data, more investigation is

o8

needed to come to a full conclusion. However, for now this fails to fulfill the five-second
mark requested in REQ027.

7.1.3. Excitement Factors

Requirement Description PWA- Covered
Relevant
REQ029 After the first visit, the web app should be | No Yes

able to provide the user with basic meta-
data for datasets, publications, research
sites and map layers without requiring a
working network connection

REQO030 The web app should present contents in a | Yes Yes
way that elements do not jump as the page
loads

REQO031 When the user goes back to a previous page | Yes No

containing a list, the web app should be able
to restore the scroll position of that list

REQ032 When an input is selected that opens an | Yes Yes
onscreen keyboard, the web app should en-
sure that the input will not be covered b
the keyboard or another element

REQO033 The web app shall inform the user when | Yes Yes
accessed offline

The total coverage of excitement factors is 80% (4/5).
The total coverage of PWA-relevant excitement factors is 75% (3/4).

With the whole webapp being prerendered, DOM contents are available as soon as
the basic HTTML document is loaded, which completely avoids the issue of lazy-loaded
content jumping into appearance (REQ030). Additionally, most images and icons are
used as a background image to HTML block elements with fixed dimensions. That
way the browser will reserve the required space for an image in the document flow even
before the image is loaded, because the dimensions are already known.

The total coverage of all requirements is 66.6% (22/33).
The total coverage of all PWA-relevant requirements is 70.6% (12/17).

Many of the case-study specific requirements have been dropped because of either
technical limitations (REQ011, REQ012, REQO013) or time constraints. Some of the
PWA-specific requirements that have not been fulfilled were due to not having a com-
plete understanding about some specifics of the frameworks in use. This mostly affected
missing page transitions (REQ021), a too large bundle to achieve initial load times un-
der five seconds on a 3G network (REQ027) and not restoring the scroll position from

99

the previous page properly (REQO031). Pursuing these issues has been discontinued due
to time constrains as they do not impact core PWA principles in a severe way.

7.2. Assessment of current Practices

This section will look at different practices that have been applied during the develop-
ment of the prototype for the case study. These practices mostly stem from the Google
Checklist for PWAs|Gool7c|, JAMStack best practices[jam] and own observations made
during the development process, as well as from looking into other web development
projects.

Using a Secure Connection HTTPS offers a transport encryption between the browser
and a web server and grants three major gains: Confidentiality, data integrity and
authenticity. Confidentiality becomes important when sensitive information is trans-
mitted over the network that must not be interpretable by anyone that may intercepts
the network connection (also known as man-in-the-middle) [Isal8]. While the input
of sensitive data is not a use case in the case study, the latter two points still offer
benefits: Data integrity ensures that data has not been manipulated during the trans-
mission from the webserver to the browser, while authenticity attempts to prove that
the webserver that responds to a request is indeed the intended recipient/sender. The
disadvantage is a slightly longer connection initialization, as at first an asymmetrical
encryption will be used to exchange a key that is then used to symmetrically encrypt
the actual HTTP responses. This combines the increased security of asymmetric en-
cryption with the higher performance of symmetrical encryption. Additionally to the
mentioned security reasons, certain technologies like service workers require an HTTPS
connection while browsers start to indicate increasingly prominent warnings (see fig.7.1)
to the user when visiting an unencrypted website.

& C 1)} | ® Mot secure | www.stealmylogin.com/dema.html
Login

username:

Username

password:

login

Figure 7.1.: Google Chrome browser showing a warning on a non-HTTPS page with a
password input

60

Adopting a Responsive Design Mobile devices are making a huge part of todays
web consumption and should definitely be accounted for. Statcounter reports mobile
devices currently being globally the most popular device to browse the web with above
50%|stal8], however this does vary a lot with the type of industry that the website
addresses, seen in the table below (data from [Engl7]).

Industry % Mobile Traffic
Adult 74.90%
Food and Drink 65.00%
Beauty and Fitness 63.60%
People and Society 74.90%
Home and Garden 61.00%
Internet and Telecom 60.40%
Health 59.70%
Pets and Animals 59.50%
Sports 59.20%
Autos and Vehicles 58.30%
Business and Industry 57.40%
Shopping 56.90%
Books and Literature 54.60%
Reference 54.20%
Recreation and Hobbies 53.80%
Law and Government 52.80%
News and Media 50.70%
Travel 50.40%
Career and Education 47.60%
Art and Entertainment 45.00%
Science 42.90%
Computer and Electronics 42.60%
Games 40.40%
Finance 39.60%

Unless a web application is purely accessed on desktops (e.g. corporate intranet ap-
plications), adopting a responsive design is a good idea. Depending on the available
resources, this can scale from merely utilizing of a responsive grid system to elabo-
rate loading speed optimizations and specific Ul components that capitalize on the
availability of touch events and screen orientation.

Enabling an Offline Experience This allows web applications to match availability
similar to native applications. While it is obvious that network dependent tasks cannot
function offline, there should at least be some functionality or a short notice explaining
that the user is currently offline. This can only work by utilizing the service worker
and more exactly its caching API. However, the service worker life cycle is non-trivial
and may not always function as expected. During the implementation phase for the
case study, there have often been cases where a new service worker would not activate

61

or old files would keep getting served. While those issues can be solved, it is rather
easy to fall in those traps for developers that do not have a good grasp on the service
worker life cycle. This may lead to a flawed caching strategy staying around longer
than intended or even cause a web application to wrongfully cache resources for an
undetermined time while currentness may be a concern.

Ensuring Cross-Browser Compatibility This has been greatly simplified with the
introduction of transpiling. Current transpilers replace modern ECMAScript with poly-
fills if necessary to ensure compatibility with most browsers. Browserslist queries|Bro|
allow the targeting of browsers in a linguistically clear way, e.g. "last 2 versions" for the
last two major browser versions, or "> 2%" for browser versions which usage is above
two percent. This makes it very transparent for developers to see which browser will
be supported after the transpiling process. Developers can use current ECMAScript
functionalities now, without having to wait for all browsers to support those. However,
this also means that the generated code may get bloated with poly-fills that could
be avoided by adopting older ECMAScript feature sets. Additionally, debugging of
transpiled code may prove to be harder unless additional source maps are provided
which allow mapping from transpiled code to the more readable source code.

Emphasizing Content Semantics and Structures Web applications usually try to
present their contents in a way that Ul elements are easily visually recognizable. Be-
yond that visual presentation, applications need to be optimized to be read by other
machines too. These are usually screen readers for users with a visual impairment or
indexing services of search engines. Improving the readability for those instances can
help in reaching more users in both cases. One basic approach lies within using seman-
tically correct HTML5 markup. Before the advent of HTML5, div and span HTML
elements have been used ambiguously anytime contents needed to be wrapped in either
a block or inline element, which is not helped by the fact that CSS allows to overwrite
whether an element is actually displayed as a block or inline element. HTML5 offers
many new elements which often behave like a div while being more descriptive about
their contents. This makes it easier for machines to guess with what kind of content is
being dealt with, e.g. navigational contents can be wrapped in a nav element, articles
in an article element, sidebars in an aside element to only name a few[W3Sb|. However,
with rich web applications, not all HI'ML elements outline meaningful content, instead
there will be many elements that may function as a toggle, a tab or a progressbar
without additional text that contains semantic significance. ARIA[KGB18| solves this
by adding additional attributes to describe elements further. Most importantly the role
attribute, which declares when an HTML element is of functional purpose instead of
holding content. Finally, structured data allows for easier indexing by search engines
and can improve how easy a web application can be found by potential users. There
are multiple ways to achieve this, namely JSON-LD, Microdata and RDFa, whereas
google highly recommends JSON-LD|[Gool7a|. Structured data works by describing
meta information about the current page using the vocabulary of schema.org.

The idea of semantic markup does seem to clash a little with the usage of certain
frontend frameworks. This is mostly the case with frameworks that aim to add respon-

10

11

12

13

14

62

siveness and specific Ul components to the application. These frameworks cannot know
any specifics about a web application, which is why they come with very generic CSS
classes to be able to adopt many use cases. Ul elements often have to be wrapped in
additional container-elements which, while required by the UI framework, do not add
any semantic meaning to the document (see fig.7.2).

<div class="container">
<div class="row">
<div class="col—sm">
One of three columns
</div>
<div class="col—sm">
One of three columns
</div>
<div class="col—sm">
One of three columns
</div>
</div>
</div>

Figure 7.2.: Minimum markup required for a three-column grid in bootstrap [Boo]

Adopt a Service-Based Architecture Server-side rendered applications often present
tight coupling between the frontend and backend. As a consequence, it can be very hard
to replace specific technologies without having to reimplement large parts of a mono-
lithic architecture. Supporting architectures like this over a long period can create
situations where many resources need to be spend, managing and updating dependen-
cies that may break certain functionalities. Alternatively, frontend and backend can be
developed as independent projects that communicate with each other using APIs[jam]|.
A currently evolving trend is the advent of headless content management systems|Neta]
which offer a UI for editors and content managers to create content that is then exposed
via APIs to a web application. This approach has multiple gains: Data is decoupled
from the application and while it can be managed conveniently in one place, the data
can be accessed from multiple applications like web applications, mobile apps or as a
B2B interface for business partners. The other benefit is how services can be easily
replaced as long as the API remains the same. Having the option to adopt to new
technologies quickly can be an asset to stay competitive as a business.

Adopt Pre-Rendering when appropriate Server-side rendering as well as client-side
rendering can introduce certain delays before displaying meaningful content to the
user. In the case of server-side rendered pages, this would be the processing time
where the server may perform a set of operations until a response, containing the final
HTML document, can be made. Client-side rendered pages have to retrieve, compile
and execute JavaScript code before information can be displayed. It is important to

63

identify if currentness of a certain page is a concern or not. Pre-Rendered pages allow for
reduced load times compared to both aforementioned approaches as no processing needs
to be done anymore on server-side, while static content is already served and viewable
by the time the document has been loaded by the browser. Only dynamic elements need
to wait for JavaScript to execute in order to function. The downside of this approach
is, how pre-rendered pages need to be manually rerendered and deployed whenever
changes need to occur. To mitigate this, this may be automated by an headless CMS
or a CI/CD pipeline. There may be cases where content needs to change the instant a
user made input within a web application and where waiting for a pre-rendering process
to generate and deploy changes is not appropriate. This is a case where the app shell
model is more suitable. Pre-rendering can still be applied to the app shell, which rarely
changes, while contents are dynamically fetched via JavaScript. To trick load time
perception|Cam17], empty placeholders can be displayed, which are then later replaced
with the actual contents, once those finished loading. While pre-rendering may use
any form of internal data to generate pages, app shell style applications require some
sort of service-oriented architecture in order to query endpoints to retrieve contents
from. In general, if the app shell model is adopted, the lines between the app shell and
actual contents may be blurred as a pre-rendered page may contain both already. If
pre-caching is used (through service worker) it is not possible anymore to only pre-cache
the app shell without the content.

Creating a Native-Like User Experience While initial load time may be one impor-
tant factor for a good user experience, it is also important to retain a certain degree
of responsiveness throughout the application life cycle. The goal is to reach a similar
user experience as native applications in regards of performance and reliability, in order
for web applications to become a viable option. While asynchronous tasks allow for
non-blocking calls, it should not be used to transmit large chunks of data at once as
this will still slow down the UI thread. Processing-intensive tasks should be moved to
a worker-type (WebWorker or ServiceWorker) script in order to achieve true concur-
rency. If specific routes need large amounts of data, this data may be pre-loaded in
preparation (e.g. using <link rel="preload"”>) on less data-heavy routes. The ability
to select text should be disabled on interactive elements, as especially on mobile this
can cause a disruptive behavior where consecutively pressing a button may select the
button text and open a dialogue to copy the selected text. Images should use fixed
dimensions so that the browser will reserve the required space in the document flow
even before the image finished loading. Without fixed dimensions, a situation may
arise where users try to read a text that is suddenly pushed out of view by an image
that just finished loading. If exact image dimensions cannot be predicted, the image
can alternatively used as a background to a fixed dimension container, with the CSS
property background-size set to "cover". This will stretch the image to fill the container
while keeping the correct aspect ratio, at the cost of possibly only displaying part of
the image.

Improving Developing Experience In order to keep up with the demands of modern
web applications, it becomes necessary to also address the needs of developers. There

64

are an overwhelming amount of tools, frameworks and libraries that aim to assist
developers. The usage of package managers allow all developers involved in a project
to have consistent dependencies, without having to add those dependencies into their
version control (e.g. git, svn), which would cause unnecessarily large commits whenever
a dependency is updated, added or removed. Transpilers give developers the freedom
of choosing more feature-rich alternatives to HTML, JS and CSS while also ensuring
that the resulting files are compatible with specific browser versions. Tools like the
webpack devserver feature hot module reloading in order to create a faster feedback loop
whenever changes to the code are made. The feedback loop can also be improved by
adopting a continuous integration pipeline, where any code commits are automatically
tested by a pre-defined process and warnings are send to the dev team if a test fails
to succeed. This allows developers to receive warnings while they may still be in the
mindset of that specific change, opposed to a much later date when the project may
actually be deployed. In fact, many packages in the NPM registry feature a github
page that shows the current build status (success or fail), test coverage or whether
their dependencies are up to date.

Adding a large amount of tools does not come without a cost. Eric Clemmons talks
about JavaScript fatigue[Cle15] where he describes how many decisions are needed to
be made in order to set up an initial project, long before even a single line of code
can be written. Dan Abramov, one of the React core authors, acknowledges this issue
and suggests tool authors to find useful presets in order to minimize the cognitive load
caused by those decisions|Abr17|. He also describes how authors of JavaScript tools are
"[...] a gatekeeper to the largest programming community in the world.". Additionally
to the complex tooling, many frameworks expect a very up-to-date understanding of
ECMAScript and its ecosystem in order to build rich applications. This may require
training current employees or hiring additional ones.

7.3. Costs

Browser Limitations Almost no operation system functionalities are exposed to a
web application. A web application can not see tasks running on the system, and it
has no "real" access to the filesystem. The HTMLS5 filesystem API[MDN18a| allows
to reserve some space within the local file system to store information but there is no
way to access actual files in the filesystem. This makes applications like media players
or file managers mostly impossible. The only way around this, is by having the user
manually supply files using the e.g. the HTML file input or creating a pane where files
can be dropped on. However, this is still a read-only process and has to be initiated
by the user every time the application is accessed. Additionally, Dan Dascalescu lists
further limitations that can not currently be done by progressive web apps [Das18|:

Accessing local contacts, calendar entries or browser bookmarks

Setting alarms

Telephony features, like sending/receiving SMS, calls or voice mails

Access to specific hardware sensors

65

e System access, which contains aforementioned things like task management, but
also modifying system settings or accessing log files.

e Becoming the default app for custom URL schemes, protocols or file types

Many of these limitations could be seen as a benefit as removing them would expose
the devices in use to a variety of possible malware and other misuse. While this is also
true for many native apps, this issue is more severe on web applications as they can be
accessed by accident when browsing the web, without any setup or user confirmation
required.

JavaScript Fatigue As mentioned earlier, the JavaScript ecosystem is heavily ex-
panding which makes it increasingly harder to confidently make decisions about specific
tools, frameworks or libraries at hand. Configuration of tools can take an significant
amount of resources before the development process can even start|Clel15|[Abrl7].

Non-Trivial Service Worker Life Cycle It is easy to use a Service Worker wrongly,
which can cause large problems like web applications unable to update themselves.
Service Workers need to be used with caution|Popl7].

7.4. Benefits

Shareable and Linkable Web applications are very easy to share, as no large files
need to be sent and validated, but instead a simple URL suffices|Rus15]. The concept
of sharing URLs is well-established for many users, even more so on mobile operating
systems where a share-functionality is embedded in many applications.

Device-Agnostic As a modern browser is the only hard-requirement, web applications
run on a very broad amount of devices without requiring multiple code-bases to address
multiple platforms. This makes web applications more resource-efficient to develop
compared to native applications.

Instant Deployment No installation step is required when opening a web application.
This trivializes deployment of new versions, as assets will be updated automatically,
depending on the chose caching strategy. Deployment is especially easy compared to
apps that reside in stores, where any update may need to be approved by the store
provider to ensure that its policies are respected.

Approachable Web applications will automatically run, the moment they are ac-
cessed. Specific setup and configuration is not necessary, which is a benefit if a user is
not comfortable or privileged (e.g. due to company policies) to set-up new software.

Low Storage Requirements As the browser acts as the primary platform for progres-
sive web apps to run on, most heavy-lifting is already done there and does not need
to be implemented by the software engineer. This results in much smaller file sizes

66

compared to native applications. Twitter demonstrates this by comparing their new
progressive web app (600KB in size) with their native android application (23.5MB in
size) |GoolT7d].

67

8. Conclusion

8.1. Viability of Web Applications

While new technologies may be exciting to some, it will be hard to establish them
in a corporate setting unless revenue can be generated. This section will check how
how some businesses managed to adopt progressive web apps by presenting tangible
numbers.

In 2017, twitter deployed a progressive web app to replace their current mobile web app
|Gool7d]. The amount of interaction increased dramatically (75% more tweets, 65%
more pages per session) and uses only a fraction of the storage (600KB) compared to
their current native mobile app (23.5MB for the android app).

The indian cab aggregator Ola also reports success with their progressive web app ver-
sion of their app [Gool7b|. While they do still offer both, the PWA and native apps,
they report up to 68% increase in traffic. This is most noticable in less developed cities
(Ola reports it as "Tier 3 cities"), where cellular network connection can be unreliable
and where many devices have low processing power, memory and storage. In those
areas, Ola reports a 30% higher conversation rate' on their new PWA compared to
their native app. This is likely due to only using 200KB of data compared to their
60MB android app and 100MB iOS app. Repeat visits of the PWA take as little as
10KB to load. It is important to note that most success stories stem from the Google
Developers portal and it is hard to find data that is not either directly from Google or
Google-hosted events.

Formidable gives some insight on their work for the new Starbucks PWA which is
99.84% smaller than the existing iOS app (only 233KB compared to 148MB), while
also being faster[For|. However, they do describe reaching this type of "native-like"
feel as challenging. They do not report any data of actual usage or conversion rates
though.

During finalization of this work, Microsoft has started to publish progressive web apps in
their store which have been automatically indexed by the bing search engine. Microsoft
is treating PWAs as "first-class citizens" [Pfl+18|, making them mostly indistinguish-
able from native applications in windows 10.

It can be concluded that progressive web apps seem to be an attractive alternative for
native mobile apps which require an installation step and use more data and storage,
while offering a very similar experience. There is not much data about using PWAs as
a substitute for native desktop applications, other than windows 10 including them in
their store.

LConversion rate describes the amount of users that become a customer

68

8.2. Good practices for Progressive Web Applications

This section will list a recommendation of good practices to build progressive web
applications. The practices are a direct result of the evaluation process in chapter 7.2
(P.59), and are split into the three categories below.

Organizational Concerns

Train or hire developers to handle the current ECMAScript standard ECMAScript
evolved a lot in the recent years and many modern framework and tools expect software
engineers to have up-to-date knowledge.

Pick a filename for your service worker and stick with it This ensures that an
installed Service Worker is properly replaced. If removal of a service worker is necessary
a no-op service worker can be used. A no-op (short for no operation) service worker will
offer no functionality other than replacing the current one which effectively disables any
precaching and networking strategies that may have been set in place by the previous
one.

Decouple front-end from back-end This makes it easier to replace specific technolo-
gies or reuse specific services for multiple, specialized front-ends (see [jam]).

Functional Concerns

Use HTTPS encryption This offers confidentiality, data-integrity and authenticity to
the user which is also highlighted by browser vendors and search engines.

Use a transpiler to ensure browser compatibility Modern transpilers like Babel en-
sure that modern ECMAScript features will be replaced with polyfills in order to sup-
port older Browsers.

Use a cache-first network-strategy whenever possible This will enable browsers to
instantly retrieve cached assets without the usual network delay on any consecutive
visit|Cam16].

Usability Concerns
Use a responsive grid layout to adapt to varying screen sizes Important content

elements need to be properly readable on a wide spectrum of heterogeneous devices.

Pre-cache critical assets to reduce load times Assets that are guaranteed to be
required during use of the application (e.g. app shell), should be pre-cached by a
service worker to allow almost instant load times.

Use a module bundler in order to push minimal assets on a given route This will
further reduce load times as bundle sizes shrink. This is also one of the PRPL-principles.

69

Use semantic HTML markup and JSON-LD This will make it easier for search
engines to index a PWA, which - as a result - will make it easier for potential users to
find the application on the internet.

Use ARIA-roles for ambiguous HTML elements ARIA-roles will help assisting tech-
nologies like screen readers to tell functional elements apart from content elements.

Pre-render static pages Whenever a page does not contain any dynamic informa-
tion, consider pre-rendering the page in order to make a site viewable even before
any Ul framework loads and executes. Pre-rendering can also be used when adopting
isomorphic rendering|Mar16.

Use the app shell model for dynamic contents The app shell will only need to be
loaded once and remains throughout the app navigation. The app shell can also be
pre-cached for almost instant loading on consecutive visits.

Offload slow processing to web workers JavaScript may be event-based, but it is
still single-threaded. Due to that nature, processing-intensive tasks can affect Ul per-
formance noticeably. Web workers are the only way to create true concurrency without
affecting the UI thread.

Preload assets that are likely to be required for upcoming routes Assets that are
likely to be required upon further navigation may be pre-loaded on the current route,
using <script rel="preload”>. The browser will start downloading the assets as soon as
all current network requests are finished. Pre-loading is also one of the PRPL-principles.

Disable text selection on interactive elements like buttons or other non-content
Interactive elements may be toggled in rapid succession. On touchscreen devices, this
will often cause a text-selection tool to prompt the user, which is likely to be unintended
and disruptive.

Use fixed-dimension placeholders for images Images usually have higher load-times
than text. Without fixed dimensions, an image that has finished loading will retroac-
tively push contents around, which can interrupt the user that already started to read
the text|Cam16].

Use page-transitions to increase perceived performance This gives users feedback
that their navigation request is processing. A skeleton-page should be displayed which
is then replaced by actual contents, once the navigation request has been processed
[Cam17][Gool7¢].

Scroll positions should be preserved when going from a detail-view to a list-
view This allows users to continue exploring the previous list with little friction

[Cam17][Gool7¢].

70

Offer a share-button if the PWA is able to be launched fullscreen If the PWA
manifest allows for fullscreen (or other view modes that hide the address bar), an
alternative way to share the current URL with others is recommended|Cam16].

Avoid "hamburger menus" for essential routes Hamburger menus hide possible
navigation options from the user and require at least two presses to navigate to any of
the main routes[Abr14]. Consider using a bottom navigation|Mat| instead.

8.3. Final Conclusion and Outlook

Progressive web apps present a viable approach to cross-platform needs, as software en-
gineers can completely focus on web APIs without having to address the vast quantity
of challenges that emerge when multiple, platform-specific, native applications have to
be maintained at once[CY99]. However, not all cross-platform concerns vanish, the
UI needs to adopt to varying screen sized and orientations (and ideally even screen
readers), which, to get it right, can be a whole discipline in itself. Additionally, web
applications are not able to access data on the local file system (unless the user man-
ually provides them each time the application is used), as well as any os-level APIs
(e.g. controlling other applications or launching processes), which limits the amount of
use cases that can be solved with progressive web apps. There are other solutions like
electron|Ele|, which expose some of these os-level APIs, but these applications only run
within their own instance of a modified chromium browser and need to be downloaded
similar to a native app, which is the exact opposite approach (bringing web technolo-
gies to native apps), opposed to PWAs (bringing native look and feel to the web). If
those concerns do not matter for the application at hand, progressive web apps seem
to keep up just fine with their native variants|Gool7d| and even surpass them in some
cases|Gool7b|, while also using far less storage on the device|For].

Developing a progressive web app requires deep understanding of todays web devel-
opment with a heavy focus on user interaction. This is also highlighted by the sheer
amount of good practices that address usability concerns, as listed in the previous sec-
tion. Progressive web apps grew beyond the simple input-process-output model and
often adopt complex Uls, where managing state and delivering effective user experi-
ence become the main challenges. Additionally, the amount of technologies and patterns
that need to be understood keeps growing, which can present a major hurdle for busi-
nesses that have to keep adapting, as well as beginner developers that try to enter this
domain.

Once those hurdles are overcome, progressive web apps offer the most accessible, fric-
tionless and shareable type of application that is available right now.

Bibliography

[Abr14]

[Abrl7]
[Aga+]
[Anal6|
[Ang]
[Arcls]
[Bab]
[bes17]
[Bool
[Bro]

[Cam16]

[Cam17]

[CKA]

[Clel5|

[Col+]

Luis Abreu. Why and How to Avoid Hamburger Menus. May 14, 2014. URL:
https://1lmjabreu. com/post/why-and-how-to-avoid-hamburger -
menus/ (visited on 04/06/2018).

Dan Abramov. The melting pot of JavaScript. 2017. URL: https://increment.
com/development/the-melting-pot-of-javascript/ (visited on 04/03/2018).

Vladimir Agafonkin et al. Leaflet - a JavaScript library for interactive
maps. URL: http://leafletjs.com/ (visited on 04/12/2018).

Andrew Anampiu. The four principles of OOP. May 18, 2016. URL: https:
//anampiu.github.io/blog/00P-principles/ (visited on 04/11/2018).

Angular. Angular. Google. URL: https://angular.io/ (visited on 04/12/2018).

Jake Archibald. The Service Worker Lifecycle. Jan. 3, 2018. URL: https:
/ / developers . google . com/ web / fundamentals / primers / service -
workers/lifecycle (visited on 01/09/2018).

Babel. Babel - The compiler for writing next generation JavaScript. URL:
https://babeljs.io/ (visited on 04/12/2018).

bestof.js.org. 2017 JavaScript Rising Stars. 2017. URL: https://risingstars.
js.org/2017/en/#section-framework (visited on 03/05/2018).

Bootstrap. Grid system. URL: https://getbootstrap.com/docs/4.0/
layout/grid/ (visited on 04/12/2018).

Browserslist Contributors. Browserslist. Evil Martians. URL: https://
github.com/browserslist/browserslist.

Owen Campbell-Moore. Designing Great Uls for Progressive Web Apps.
May 22, 2016. URL: https://medium.com/Qowencm/designing-great-
uis-for-progressive-web-apps-dd38c1d20£7 (visited on 04/05/2018).

Owen Campbell-Moore. Creating UX that “Just Feels Right” with Progres-
sive Web Apps. Google 1/O 2017. May 18, 2017. URL: https: //www .
youtube . com/watch?v=mmg-KVeO-uU (visited on 03/29/2018).

CKAN Association. About CKAN. URL: https://ckan.org/about/ (vis-
ited on 04/12/2018).

Eric Clemmons. Javascript Fatigue. Dec. 27, 2015. URL: https://medium.
com/ @ericclemmons / javascript - fatigue - 48d4011b6fc4 (visited on
04/03/2018).

Zach Cole et al. Simple Grid | Lightweight CSS grid for web development.
URL: http://simplegrid.io/ (visited on 04/12/2018).

https://lmjabreu.com/post/why-and-how-to-avoid-hamburger-menus/
https://lmjabreu.com/post/why-and-how-to-avoid-hamburger-menus/
https://increment.com/development/the-melting-pot-of-javascript/
https://increment.com/development/the-melting-pot-of-javascript/
http://leafletjs.com/
https://anampiu.github.io/blog/OOP-principles/
https://anampiu.github.io/blog/OOP-principles/
https://angular.io/
https://developers.google.com/web/fundamentals/primers/service-workers/lifecycle
https://developers.google.com/web/fundamentals/primers/service-workers/lifecycle
https://developers.google.com/web/fundamentals/primers/service-workers/lifecycle
https://babeljs.io/
https://risingstars.js.org/2017/en/#section-framework
https://risingstars.js.org/2017/en/#section-framework
https://getbootstrap.com/docs/4.0/layout/grid/
https://getbootstrap.com/docs/4.0/layout/grid/
https://github.com/browserslist/browserslist
https://github.com/browserslist/browserslist
https://medium.com/@owencm/designing-great-uis-for-progressive-web-apps-dd38c1d20f7
https://medium.com/@owencm/designing-great-uis-for-progressive-web-apps-dd38c1d20f7
https://www.youtube.com/watch?v=mmq-KVeO-uU
https://www.youtube.com/watch?v=mmq-KVeO-uU
https://ckan.org/about/
https://medium.com/@ericclemmons/javascript-fatigue-48d4011b6fc4
https://medium.com/@ericclemmons/javascript-fatigue-48d4011b6fc4
http://simplegrid.io/

IT

[Con]

[Corl7]

[Cro01]

[CY99]

[Dail7]

[Das18|

[Ecm17]

[Ele]

|[Engl7]

[Fen12|

[For|
[Geo]

[Gool7a]

[Gool7b]

Workbox Contributors. Workbox | Google Developers. Google Developers.
URL: https://developers.google.com/web/tools/workbox/ (visited
on 04/12/2018).

Chris Cordle. Why Angular 2/4 Is Too Little, Too Late. June 29, 2017.
URL: https://medium.com/@chriscordle/why-angular-2-4-is-too-
little-too-late-ea86d7falbae (visited on 04/12/2018).

Douglas Crockford. Private Members in JavaScript. 2001. URL: https :
//crockford.com/javascript/private.html (visited on 11/28/2017).

Michael A. Cusumano and David B. Yoffie. “What Netscape Learned from
Cross-platform Software Development”. In: Commun. ACM 42.10 (Oct.
1999), pp. 72-78. 1SSN: 0001-0782. DOL: 10.1145/317665 . 317678. URL:
http://doi.acm.org/10.1145/317665.317678.

Brandon (@Qaweary) Dail. you can push into Array.prototype and totally
mess up empty arrays. Nov. 10, 2017. URL: https ://twitter . com/
aweary/status/928848521012195328 (visited on 04/11/2018).

Dan Dascalescu. Why “Progressive Web Apps vs. native” is the wrong ques-
tion to ask. Chrome Developers. Feb. 2018. URL: https://medium. com/
dev-channel/why-progressive-web-apps-vs-native-is-the-wrong-
question-to-ask-fb8555addcbb (visited on 04/12/2018).

Ecma International. ECMAScript®) 2017 Language Specification (ECMA-
262, 8th edition, June 2017). June 2017. URL: https ://www . ecma -
international.org/ecma-262/8.0/index.html (visited on 04/11/2018).

Electron Contributors. Electron | Build cross platform desktop apps with
JavaScript, HTML, and CSS. URL: https://electronjs.org/ (visited
on 04/12/2018).

Eric Enge. Mobile vs Desktop Usage: Mobile Grows But Desktop Still a Big
Player. Apr. 5, 2017. URL: https://www.stonetemple.com/mobile-vs-
desktop-usage-mobile - grows-but - desktop-still-a-big-player/
(visited on 03/27,/2018).

Steve Fenton. Compiling vs Transpiling. Nov. 18, 2012. URL: https://www.
stevefenton.co.uk/2012/11/compiling-vs-transpiling/ (visited on
04/12/2018).

Formidable. Starbucks - Formidable Case Study. URL: https://formidable.
com/work/starbucks-progressive-web-app/ (visited on 04/12/2018).

GeoNode Contributors. GeoNode. URL: http://geonode.org/ (visited on
04/12/2018).
Google Developers. Introduction to Structured Data. Google Developers.

Sept. 13, 2017. URL: https://developers.google.com/search/docs/
guides/intro-structured-data (visited on 04/12/2018).

Google Developers. Ola drives mobility for a billion Indians with Progres-
sive Web App. May 17, 2017. URL: https://developers . google. com/
web/showcase/2017/0la (visited on 11/20/2017).

https://developers.google.com/web/tools/workbox/
https://medium.com/@chriscordle/why-angular-2-4-is-too-little-too-late-ea86d7fa0bae
https://medium.com/@chriscordle/why-angular-2-4-is-too-little-too-late-ea86d7fa0bae
https://crockford.com/javascript/private.html
https://crockford.com/javascript/private.html
https://doi.org/10.1145/317665.317678
http://doi.acm.org/10.1145/317665.317678
https://twitter.com/aweary/status/928848521012195328
https://twitter.com/aweary/status/928848521012195328
https://medium.com/dev-channel/why-progressive-web-apps-vs-native-is-the-wrong-question-to-ask-fb8555addcbb
https://medium.com/dev-channel/why-progressive-web-apps-vs-native-is-the-wrong-question-to-ask-fb8555addcbb
https://medium.com/dev-channel/why-progressive-web-apps-vs-native-is-the-wrong-question-to-ask-fb8555addcbb
https://www.ecma-international.org/ecma-262/8.0/index.html
https://www.ecma-international.org/ecma-262/8.0/index.html
https://electronjs.org/
https://www.stonetemple.com/mobile-vs-desktop-usage-mobile-grows-but-desktop-still-a-big-player/
https://www.stonetemple.com/mobile-vs-desktop-usage-mobile-grows-but-desktop-still-a-big-player/
https://www.stevefenton.co.uk/2012/11/compiling-vs-transpiling/
https://www.stevefenton.co.uk/2012/11/compiling-vs-transpiling/
https://formidable.com/work/starbucks-progressive-web-app/
https://formidable.com/work/starbucks-progressive-web-app/
http://geonode.org/
https://developers.google.com/search/docs/guides/intro-structured-data
https://developers.google.com/search/docs/guides/intro-structured-data
https://developers.google.com/web/showcase/2017/ola
https://developers.google.com/web/showcase/2017/ola

11

[GoolTc|

[Gool7d|

[Gril7]

[Hic15|

[Hun13]

[Iri1§]

[Isal8|

[jam]

[Jan17]

[Job13]

[KGB18]

[KH]

[Kral

[Linl7|

Google Developers. Progressive Web App Checklist. Nov. 14, 2017. URL:

https : / / developers . google . com/ web / progressive - web - apps /
checklist (visited on 02/28/2018).

Google Developers. Twitter Lite PWA Significantly Increases Engagement
and Reduces Data Usage. May 17, 2017. URL: https : //developers .
google.com/web/showcase/2017/twitter (visited on 11/20/2017).

Alex Grigoryan. The Benefits of Server Side Rendering QOuver Client Side
Rendering. Apr. 17, 2017. URL: https ://medium . com/walmartlabs /
the - benefits - of - server - side - rendering - over - client - side -
rendering-5d07ff2cefed (visited on 01/09/2018).

Ian Hickson. Web Workers. W3C. Sept. 24, 2015. URL: https://wuw.w3.
org/TR/workers/ (visited on 04/12/2018).

Pete Hunt. React: Rethinking best practices. JSConf EU 2013. Oct. 30,
2013. URL: https://www.youtube.com/watch?v=x7cQ3mrcKaY (visited
on 03/05/2018).

Paul Irish. Flexbox layout isn’t slow. Google Developers. Jan. 3, 2018. URL:
https://developers . google . com/web/updates/2013/10/Flexbox-
layout-isn-t-slow (visited on 03/13/2018).

Ayo Isaiah. What every Web Developer should know about HTTPS Part 1 -
The value of HTTPS. Jan. 28, 2018. URL: https://freshman.tech/the-
value-of-https/ (visited on 04/12/2018).

jamstack.org. JAMstack | JavaScript, APIs, and Markup. URL: https :
//jamstack.org/ (visited on 03/12/2018).

Peter Jang. Modern JavaScript Ezplained For Dinosaurs. Oct. 18, 2017.
URL: https://medium. com/@peterxjang/modern- javascript-explained-
for-dinosaurs-£695e9747b70 (visited on 04/09/2018).

William Jobe. “Native Apps vs. Mobile Web Apps”. In: International Jour-
nal of Interactive Mobile Technologies (iJIM) 4 (2013).

Meggin Kearney, Dave Gash, and Alice Boxhall. Introduction to ARIA.
Google Developers. Jan. 3, 2018. URL: https://developers . google .
com/web/fundamentals/accessibility/semantics-aria/ (visited on
04/12/2018).

James G. Kim and Michael Hausenblas. 5-star Open Data. URL: http:
//5stardata.info/en/ (visited on 04/12/2018).

Stefan Krause. Results for js web frameworks benchmark — round 7. URL:
http://www.stefankrause.net/ js-frameworks-benchmark7/table.
html (visited on 04/12/2018).

Tanner Linsley. Introducing React-Static - A progressive stat-site frame-
work for React! Oct. 5, 2017. URL: https://medium. com/@tannerlinsley/
H#EFYB8%8F-introducing-react-static-a-progressive-static-site-
framework-for-react-3470d2ablebc (visited on 03/07/2018).

https://developers.google.com/web/progressive-web-apps/checklist
https://developers.google.com/web/progressive-web-apps/checklist
https://developers.google.com/web/showcase/2017/twitter
https://developers.google.com/web/showcase/2017/twitter
https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8
https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8
https://medium.com/walmartlabs/the-benefits-of-server-side-rendering-over-client-side-rendering-5d07ff2cefe8
https://www.w3.org/TR/workers/
https://www.w3.org/TR/workers/
https://www.youtube.com/watch?v=x7cQ3mrcKaY
https://developers.google.com/web/updates/2013/10/Flexbox-layout-isn-t-slow
https://developers.google.com/web/updates/2013/10/Flexbox-layout-isn-t-slow
https://freshman.tech/the-value-of-https/
https://freshman.tech/the-value-of-https/
https://jamstack.org/
https://jamstack.org/
https://medium.com/@peterxjang/modern-javascript-explained-for-dinosaurs-f695e9747b70
https://medium.com/@peterxjang/modern-javascript-explained-for-dinosaurs-f695e9747b70
https://developers.google.com/web/fundamentals/accessibility/semantics-aria/
https://developers.google.com/web/fundamentals/accessibility/semantics-aria/
http://5stardata.info/en/
http://5stardata.info/en/
http://www.stefankrause.net/js-frameworks-benchmark7/table.html
http://www.stefankrause.net/js-frameworks-benchmark7/table.html
https://medium.com/@tannerlinsley/%EF%B8%8F-introducing-react-static-a-progressive-static-site-framework-for-react-3470d2a51ebc
https://medium.com/@tannerlinsley/%EF%B8%8F-introducing-react-static-a-progressive-static-site-framework-for-react-3470d2a51ebc
https://medium.com/@tannerlinsley/%EF%B8%8F-introducing-react-static-a-progressive-static-site-framework-for-react-3470d2a51ebc

v

[Mar]|

[Mar16|

[Mat]

[MDN17]

[MDN18a]

[MDN18b]

[Mil15]
[Neta]
[Netb]

[Neul?|

[Nor07]
[0GC]

[Osm17a]

[Osm17b|

[Pfl418]

MariaDB Foundation. About MariaDB. URL: https ://mariadb . org/
about/ (visited on 04/12/2018).

Azat Mardan. Why Everyone is Talking About Isomorphic / Universal
JavaScript and Why it Matters. Capital One. Mar. 21, 2016. URL: https:
//medium.com/capital-one-developers/why-everyone-is-talking-
about - isomorphic - universal - javascript - and - why - it - matters -
38c07c87905 (visited on 04/12/2018).

Material Design Contributors. Bottom Navigation. Google. URL: https:
//material . io/guidelines/ components/bottom-navigation . html
(visited on 04/12/2018).

MDN web docs. Object.prototype. proto . Nov. 28, 2017. URL: https:
//developer .mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Object/proto (visited on 04/11/2018).

MDN web docs. FileSystem. mozilla. Jan. 15, 2018. URL: https://developer.
mozilla.org/en-US/docs/Web/API/FileSystem (visited on 04/12/2018).

MDN web docs. Manipulating the browser history. Feb. 19, 2018. URL:
https://developer .mozilla.org/en-US/docs/Web/API/History_API
(visited on 04/12/2018).

Jason (@ developit) Miller. WTF is JSX. July 7, 2015. URL: https://
jasonformat.com/wtf-is-jsx/ (visited on 04/12/2018).

Netlify. headlessCMS | A List of Content Management Systems for JAM-
stack Sites. Netlify. URL: https://headlesscms.org/ (visited on 04/12/2018).

Netlify. Top Open-Source Static Site Generators - StaticGen. Netlify. URL:
https://www.staticgen.com/ (visited on 04/12/2018).

Jens Neuhaus. Angular vs. React vs. Vue: A 2017 comparison. Aug. 28,
2017. URL: https://medium. com/unicorn - supplies/angular - vs-
react-vs-vue-a-2017-comparison-c5c52d620176 (visited on 03/05/2018).

Dan North. What’s in a Story? Feb. 11, 2007. URL: https://dannorth.
net/whats-in-a-story/ (visited on 01/09/2018).

OGC. Web Map Service. URL: http://www.opengeospatial .org/standards/
wms (visited on 04/12/2018).

Addy Osmani. The App Shell Model. Sept. 26, 2017. URL: https://
developers.google.com/web/fundamentals/architecture/app-shell
(visited on 11/16/2017).

Addy Osmani. The PRPL Pattern. Sept. 26, 2017. URL: https://developers.
google . com/web/fundamentals/performance/prpl-pattern/ (visited
on 11/16/2017).

Kyle Pflug, Kirupa Chinnathambi, Aaron Gustafson, and Igbal Shahid.
Welcoming Progressive Web Apps to Microsoft Edge and Windows 10. Mi-
crosoft. Feb. 6, 2018. URL: https://blogs . windows . com/msedgedev/
2018/02/06 /welcoming - progressive - web - apps - edge - windows - 10/
(visited on 04/12/2018).

https://mariadb.org/about/
https://mariadb.org/about/
https://medium.com/capital-one-developers/why-everyone-is-talking-about-isomorphic-universal-javascript-and-why-it-matters-38c07c87905
https://medium.com/capital-one-developers/why-everyone-is-talking-about-isomorphic-universal-javascript-and-why-it-matters-38c07c87905
https://medium.com/capital-one-developers/why-everyone-is-talking-about-isomorphic-universal-javascript-and-why-it-matters-38c07c87905
https://medium.com/capital-one-developers/why-everyone-is-talking-about-isomorphic-universal-javascript-and-why-it-matters-38c07c87905
https://material.io/guidelines/components/bottom-navigation.html
https://material.io/guidelines/components/bottom-navigation.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/proto
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/proto
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/proto
https://developer.mozilla.org/en-US/docs/Web/API/FileSystem
https://developer.mozilla.org/en-US/docs/Web/API/FileSystem
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://jasonformat.com/wtf-is-jsx/
https://jasonformat.com/wtf-is-jsx/
https://headlesscms.org/
https://www.staticgen.com/
https://medium.com/unicorn-supplies/angular-vs-react-vs-vue-a-2017-comparison-c5c52d620176
https://medium.com/unicorn-supplies/angular-vs-react-vs-vue-a-2017-comparison-c5c52d620176
https://dannorth.net/whats-in-a-story/
https://dannorth.net/whats-in-a-story/
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wms
https://developers.google.com/web/fundamentals/architecture/app-shell
https://developers.google.com/web/fundamentals/architecture/app-shell
https://developers.google.com/web/fundamentals/performance/prpl-pattern/
https://developers.google.com/web/fundamentals/performance/prpl-pattern/
https://blogs.windows.com/msedgedev/2018/02/06/welcoming-progressive-web-apps-edge-windows-10/
https://blogs.windows.com/msedgedev/2018/02/06/welcoming-progressive-web-apps-edge-windows-10/

v

[Phal
[Popl7|

[Pos18|

[Pot]

[Rai+]
[Reaal

|[Reab]

[Reac]

[Reals|

[RSHO09)

[Rub18]

[Rus+17]

[Rus15|

[Sch16|

[Sel]

PhantomJS. PhantomJS. URL: http://phantomjs.org/ (visited on 04/11/2018).

Alexander Pope. Service Workers Outbreak: index-sw-9a4c43b4b47781ca619eaaf5ac1db.js.
JSConf EU 2017. May 16, 2017. URL: https://www.youtube.com/watch?
v=CPP9ew4CoOM (visited on 03/13/2018).

Jeft Posnick. Service Worker Registration. Jan. 3, 2018. URL: https://
developers.google.com/web/fundamentals/primers/service-workers/
registration (visited on 01/09/2018).

John Potter. npm trends: Compare NPM package downloads. URL: http:
//www . npmtrends . com/@angular/core-vs-react-vs-vue (visited on
04/12/2018).

Nick Raienko et al. Awesome React. URL: https://github.com/enaqgx/
awesome-react (visited on 04/12/2018).

React. React - A JavaScript library for building user interfaces. Facebook
Inc. URL: https://reactjs.org/ (visited on 04/12/2018).

React Contributors. Composition vs Inheritance. Facebook Inc. URL: https:
//reactjs.org/docs/composition-vs-inheritance.html (visited on
04/12/2018).

React-Static. react-static. URL: https://react-static.js.org/ (visited
on 04/12/2018).

React-Static. Core Concepts. Mar. 23, 2018. URL: https://github.com/
nozzle/react - static/blob/master /docs/ concepts .md (visited on
03/27/2018).

Chris Rupp, Matthias Simon, and Florian Hocker. “Requirements Engi-
neering und Management”. In: HMD Praxis der Wirtschaftsinformatik 46.3
(June 2009), pp. 94-103. 1SSN: 2198-2775. DOI: 10.1007/BF03340367. URL:
https://doi.org/10.1007/BF03340367.

Daniel Rubino. First Windows 10 Progressive Web Apps (PWA) pub-
lished by Microsoft hit the Store. Apr. 7, 2018. URL: https : / / www .
windowscentral . com/g00/first - batch- windows - 10 - progressive -
web-apps-here?ilOc.encReferrer=£i10c.ua=1&i10c.dv=14 (visited on
04/12/2018).

Alex Russel, Jungkee Song, Jake Archibald, and Marijn Kruisselbrink.
Service Workers 1. W3C. Nov. 2, 2017. URL: https://www.w3.org/TR/
service-workers-1/ (visited on 04/12/2018).

Alex Russell. Progressive Web Apps: Escaping Tabs Without Losing Our
Soul. June 15, 2015. URL: https://infrequently.org/2015/06/progressive-
apps-escaping-tabs-without-losing-our-soul/ (visited on 01/09/2018).
Isaac Z. Schlueter. kik, left-pad, and npm. Mar. 23, 2016. URL: http :
//blog . npmjs . org/post / 141577284765 / kik - left - pad - and - npm
(visited on 02/23,/2018).

Selenium HQ. Selenium - Web Browser Automation. URL: https://www.
seleniumhq.org/ (visited on 04/11/2018).

http://phantomjs.org/
https://www.youtube.com/watch?v=CPP9ew4Co0M
https://www.youtube.com/watch?v=CPP9ew4Co0M
https://developers.google.com/web/fundamentals/primers/service-workers/registration
https://developers.google.com/web/fundamentals/primers/service-workers/registration
https://developers.google.com/web/fundamentals/primers/service-workers/registration
http://www.npmtrends.com/@angular/core-vs-react-vs-vue
http://www.npmtrends.com/@angular/core-vs-react-vs-vue
https://github.com/enaqx/awesome-react
https://github.com/enaqx/awesome-react
https://reactjs.org/
https://reactjs.org/docs/composition-vs-inheritance.html
https://reactjs.org/docs/composition-vs-inheritance.html
https://react-static.js.org/
https://github.com/nozzle/react-static/blob/master/docs/concepts.md
https://github.com/nozzle/react-static/blob/master/docs/concepts.md
https://doi.org/10.1007/BF03340367
https://doi.org/10.1007/BF03340367
https://www.windowscentral.com/g00/first-batch-windows-10-progressive-web-apps-here?i10c.encReferrer=&i10c.ua=1&i10c.dv=14
https://www.windowscentral.com/g00/first-batch-windows-10-progressive-web-apps-here?i10c.encReferrer=&i10c.ua=1&i10c.dv=14
https://www.windowscentral.com/g00/first-batch-windows-10-progressive-web-apps-here?i10c.encReferrer=&i10c.ua=1&i10c.dv=14
https://www.w3.org/TR/service-workers-1/
https://www.w3.org/TR/service-workers-1/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
http://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
http://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
https://www.seleniumhq.org/
https://www.seleniumhq.org/

VI

[Ser]
[Shil6]
[Ske]

[Smul2]

[Sta+]
[stals]
[UTK]
[Ver14]
[Vue]
[W3Sal
[W3Sh]

[Wall4]

[web]

[Wik18]

[Wil+16]

[Wil417]

ServiceWorker Cookbook. Caching Strategies. Mozilla. URL: https://
serviceworke.rs/caching-strategies.html (visited on 04/12/2018).

Michael Shilman. Testing Frameworks. 2016. URL: http://2016.stateof js.
com/2016/testing/ (visited on 12/12/2017).

Skeleton. Skeleton: Responsive CSS Boilerplate. URL: http://getskeleton.
com/ (visited on 04/12/2018).

P. Smutny. “Mobile development tools and cross-platform solutions”. In:
Proceedings of the 13th International Carpathian Control Conference (ICCC).
May 2012, pp. 653-656. DOI: 10.1109/CarpathianCC.2012.6228727.

Patrick Stapleton et al. Awesome Angular. URL: https://github.com/
gdi2290/awesome-angular (visited on 04/12/2018).

statcounter. Desktop vs Mobile vs Tablet Market Share Worldwide. Feb.
2018. URL: http://gs . statcounter . com/platform-market - share/
desktop-mobile-tablet (visited on 03/27/2018).

Ulkit. Ulkit. URL: https://getuikit.com (visited on 04/12/2018).

Dave Verduyn. About the Kano Model. Mar. 17, 2014. URL: https://www.
kanomodel . com/about-the-kano-model/ (visited on 04/12/2018).

Vue.js. Awesome Vue.js. URL: https://github.com/vuejs/awesome-vue
(visited on 04/12/2018).

W3Schools. CSS @media Rule. W3C. URL: https://www.w3schools.com/
cssref/css3_pr_mediaquery.asp (visited on 04/12/2018).

W3Schools. HTML5 Semantic Elements. W3C. URL: https://www.w3schools.
com/html/html5_semantic_elements.asp (visited on 04/12/2018).

Philip Walton. Implementing Private and Protected Members in JavaScript.
Apr.9,2014. URL: https://philipwalton.com/articles/implementing-
private-and-protected-members-in-javascript/ (visited on 12/12/2017).

webpack. webpack module bundler. URL: https://webpack.github.io/
(visited on 04/12/2018).

Wikipedia Contributors. Responsive Web design. Mar. 27, 2018. URL: https:
//en.wikipedia.org/w/index.php?title=Responsive_web_design&
01did=832660943 (visited on 04/12/2018).

Christian Willmes, Yasa Yener, Anton Gilgenberg, and Georg Bareth.
“CRC806-Database: Integrating Typo3 with GeoNode and CKAN”. In:
vol. 96. Koélner Geographische Arbeiten. Kélner Geographische Arbeiten.
2016. DoI: 10.5880/TR32DB.KGA96.17.

Christian Willmes, Daniel Becker, Jan Verheul, Yasa Yener, Mirijam Zickel,
Andreas Bolten, Olaf Bubenzer, and Georg Bareth. “PaleoMaps: SDI for
open paleoenvironmental GIS data”. In: International Journal of Spatial
Data Infrastructures Research 12 (2017), pp. 39-61. DOI: 10.2902/1725-
0463.2017.12.art3. URL: http://ijsdir. jrc.ec.europa.eu/index.
php/ijsdir/article/view/431.

https://serviceworke.rs/caching-strategies.html
https://serviceworke.rs/caching-strategies.html
http://2016.stateofjs.com/2016/testing/
http://2016.stateofjs.com/2016/testing/
http://getskeleton.com/
http://getskeleton.com/
https://doi.org/10.1109/CarpathianCC.2012.6228727
https://github.com/gdi2290/awesome-angular
https://github.com/gdi2290/awesome-angular
http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://getuikit.com
https://www.kanomodel.com/about-the-kano-model/
https://www.kanomodel.com/about-the-kano-model/
https://github.com/vuejs/awesome-vue
https://www.w3schools.com/cssref/css3_pr_mediaquery.asp
https://www.w3schools.com/cssref/css3_pr_mediaquery.asp
https://www.w3schools.com/html/html5_semantic_elements.asp
https://www.w3schools.com/html/html5_semantic_elements.asp
https://philipwalton.com/articles/implementing-private-and-protected-members-in-javascript/
https://philipwalton.com/articles/implementing-private-and-protected-members-in-javascript/
https://webpack.github.io/
https://en.wikipedia.org/w/index.php?title=Responsive_web_design&oldid=832660943
https://en.wikipedia.org/w/index.php?title=Responsive_web_design&oldid=832660943
https://en.wikipedia.org/w/index.php?title=Responsive_web_design&oldid=832660943
https://doi.org/10.5880/TR32DB.KGA96.17
https://doi.org/10.2902/1725-0463.2017.12.art3
https://doi.org/10.2902/1725-0463.2017.12.art3
http://ijsdir.jrc.ec.europa.eu/index.php/ijsdir/article/view/431
http://ijsdir.jrc.ec.europa.eu/index.php/ijsdir/article/view/431

VII

[Wil16]

[Wor]

[Yenl7]

[You]
|Zail7|

Christian Willmes. CRC806-Database: A Semantic E-Science Infrastruc-
ture for an Interdisciplinary Research Centre. Universitit zu Koln, 2016.
URL: http://kups.ub.uni-koeln.de/7381/.

Workbox Contributors. Workbox Precaching. Google Developers. URL: https:
//developers . google . com/web/tools/workbox /modules/workbox -
precaching (visited on 04/12/2018).

Yasa (@QKisaro) Yener. Thanks, #javascript. That wasn’t quite what I ex-
pected. June 15, 2017. URL: https://twitter . com/Kisaro/status/
864169660987658240 (visited on 04/11/2018).

Evan You. Vue.js. URL: https://vuejs.org/ (visited on 04/12/2018).

Vitali Zaidman. An Owverview of JavaScript Testing in 2017. Apr. 19,
2017. URL: https://medium. com/powtoon-engineering/a-complete-
guide - to - testing - javascript - in- 2017 - a217b4cdba2a (visited on
01/08/2018).

http://kups.ub.uni-koeln.de/7381/
https://developers.google.com/web/tools/workbox/modules/workbox-precaching
https://developers.google.com/web/tools/workbox/modules/workbox-precaching
https://developers.google.com/web/tools/workbox/modules/workbox-precaching
https://twitter.com/Kisaro/status/864169660987658240
https://twitter.com/Kisaro/status/864169660987658240
https://vuejs.org/
https://medium.com/powtoon-engineering/a-complete-guide-to-testing-javascript-in-2017-a217b4cd5a2a
https://medium.com/powtoon-engineering/a-complete-guide-to-testing-javascript-in-2017-a217b4cd5a2a

VIII

List of Figures

2.1.

2.2.

2.3.

2.4.

3.1.
3.2.

4.1.

o.1.
5.2.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

6.7.
6.8.

6.9.

7.1

7.2.

Side effect of using a prototype function directly, opposed to using it on

a properly instantiated array|Dail7] 7
Developer-Satisfaction of JS testing-tools from 1 to 5. Data-Source:
http://2016.stateofjs.com /2016 /testing/ 8
Time until viewable/interactable on a site embedding a JavaScript li-
brary (React), using server-side rendering (see |Gril7]) 10
Time until viewable/interactable on a site embedding a JavaScript li-
brary (React), using client-side rendering (see [Gril7]) 11

Registration of the service worker (sw.js), once the site has finished loading 15
Distinction between the app shell and content to load, source [Osm17a| . 16

Building assets with a module bundlers like webpack[web] 24
Current architecture of the CRC806 legacy system[Wil-+16] 29
How basic-, performance and excitement factors will influence satisfac-

tion based on their execution. Source [Verld| 30
The top 5 most popular frontend framworks for 2017 [bes17] 37
Performance and memory footprints of angular, react and vue.js [Kra] . 40
Amount of NPM installs between angular(blue), react(orange) and vue(green)
[Pot] . . . 41
Page is viewable upon the initial request, after react loads, the page
becomes interactable [Real8] oL 42
Simplified section of static.config.js, where data is passed down to routes 44
Detail view of a layer in the current web application 46
Detail view of a specific research sites in the current web application . . 47

Overview for the technologies used and how they interact with each other
in this case study example. Images belong to [CKA]|, [Mar|, [Reac|, [web],

[Bab| and [Con] respectively. 49
A responsive grid that automatically falls back on varying screen sizes.

Source: [Wik18] 50
Google Chrome browser showing a warning on a non-HTTPS page with

apassword input Lo 59
Minimum markup required for a three-column grid in bootstrap [Boo| . 62
Accessing a variable from outside the block it has been defined X

Using let ensures that the current value if ¢ is copied to the event listener
callbacks XI

IX

Arrow functions quickly map a specific output to any given input XI
Three ways to achieve the same goal of accessing this XII
Exporting functionalities in form of modules, that an be reused X1V
Basic definition of a prototype and its instantiation XV
ECMAScript 2015 style class definition, using the class-keyword XV
Prototypical inheritance of an existing class (Animal) XVI

Definition of a simple module using a self-executing, anonymous function XVII
The Cook module extends the Person module with further functionality XVIII
Combining a prototype definition with the module-pattern XVIII
Definition of private properties inside the constructor XIX

Appendix

1. ECMAScript 2015+

The contents of this and the following sections in this chapter will dive deeply into the
specifics of JavaScript and thus, ECMAScript. While basic knowledge of ECMAScript
is expected in order to benefit most from these technical sections, there are some newer
aspects that have risen with the advent of ECMAScript 2015+. Some of these language
additions will be referenced multiple time in this work and may be new even to the
target audience. This section will touch on the most important ones to ensure a better
grasp throughout this work.

Declaring Variables and Constants

For the longest time, variables have been declared using the var keyword. This does
have some side effects though. In JavaScript, variables are function-scoped instead of
block-scoped. So if a variable is defined e.g. inside a loop, this variable will be available
everywhere in the parent function (see fig..1). In modern JavaScript, the keyword let

var t = function() {
for(let i = 0; i < 5; i++) {
var x = "Test"
}

return x

}
t() // returns "Test"

Figure .1.: Accessing a variable from outside the block it has been defined

can be used instead of var. Not only is let properly block-scoped, it also comes with
another useful trait. A common use case in JavaScript applications is iterating through
a list of UI elements, like buttons, and apply an eventlistener to them, to be able to
react when a click occurs on those buttons (see fig..2). In that example, using let
ensures that each button click will alert with the number that the index variable ¢ had
at the time the eventlistener callback has been created. On a page with 10 buttons,
the first button will alert "I am button #0", while the last button will alert "I am
button #9". If var had been used instead of [let, all eventhandler callbacks would alert
"T am button #9" regardless of which button is pressed, because var is function scoped
it is merely referenced by those callbacks instead of copied and by the time a button
is clicked, the loop has already finished and the index variable has been incremented
to the maximum count. To conclude, unless function-scoped behavior is intended (it

1

XI

const buttons = document.getElementsByTagName ('button')
for(let i = 0; i < buttons.length; i++)
buttons [i].addEventListener ('click', function() {
alert('I am button #' + 1)
)

Figure .2.: Using let ensures that the current value if 7 is copied to the event listener
callbacks

almost never is), let should always be used over var.

Additionally, ES2015+ allows to define constants using the const keyword. Once a value
is assigned, the value of a constant can not be changed. It is important to note here
that if an object is declared as a constant, while it cannot be overwritten, the object
does not become immutable. Any object declared as a constant can still completely
change its state.

Finally, whenever a value has to be declared, in many cases const is a good choice, only
when a value needs to be changed (and it really is a primitive value, not an object)
later in the code, let should be used. This approach dismisses whole classes of issues
that slow down productivity.

Declaring Functions Using the Arrow Notation

Functions are an essential fragment of any programming language. They allow to map
a specific output to any given input. The arrow notation focuses on exactly that part
by simplifying how functions are declared (see fig..3). On the left side of the arrow

const add = (a, b) => a + b
add(2, 3) // returns 5

Figure .3.: Arrow functions quickly map a specific output to any given input

are the inputs, if there is only one input, the parentheses can be omitted, on the right
side of the arrow is the actual code that produces the output. If there is only one
statement, the arrow function will do an implicit return. It will automatically return
the result of that one statement. Alternatively, a code block can be used after the arrow
using curly braces. In that case, there has to be an explicit return, using the return
keyword as in usual functions. While arrow functions can be quicker to write, they
also bring another important benefit. Since the function-keyword is not used, they do
not create a function scope. This is important whenever the this-keyword is used, as
it will always reference the current function scope. This can be useful when a callback
function needs to access properties outside of the callback function. Previously, this
needed less intuitive work-arounds to deal with, with arrow functions, this does become
a lot easier (see fig..4).

10

12

14

16

18

20

22

24

XII

class App {
constructor () {
const button = document.getElementById('somebutton')
// 1. Deprecated work-around,
// should absolutely be avoided!
const that = this
button.addEventListener (function () {
that.handleClick ()
1))

// 2. Better solution, the need of bind(this)

// needs to be memorized though

button.addEventListener (function () {
this.handleClick ()

}.bind (this))

// 3. Compact solution using arrow notation
button.addEventListener (_ => this.handleClick())

handleClick () {
// this needs to be accessed from a callback

Figure .4.: Three ways to achieve the same goal of accessing this

Template Literals and Tagged Templates

Concatenating strings and variables can be straight forward in simple cases like this:

console.log("Hello, " + user.name + "!")

But it can become a lot less readable, when specific markup is involved, e.g.:

document .write("" + 1link.label
+ llll)

This is where template literals can aid the developer. For this, strings are enclosed
with the "“" character while JavaScript expressions can be embedded everywhere in
the string while enclosed in §{...}. The above example, where HTML markup for a
link is assembled, can be simplified as:

document .write(${1link.labell}")

Additionally, these templates can be tagged in order to utilize custom parsing functions.
As an example, Facebook’s GraphQL uses tagged templates in order to automatically
parse GraphQL queries:

(<

XIII

import {graphql} from 'graphql'
const query = graphql"~
query LayoutQuery {
site {
siteMetadata {
title

The above template will automatically be passed as a parameter to the graphgl-function
that is imported at the top (more on imports on P.XIV).

Spread and Rest Operator

Spread and rest operators are an easy way to assign all elements of an array. This
can be useful to define a function where separate parameters will be accumulated (rest
operator):

const sum = (...numbers) => numbers.reduce((a, b) => a + b)
sum(1, 2) // returns 3
sum(1, 1, 1, 1, 1) // returns 5

They are also useful for the opposite case where an accumulated list of parameters
should be passed separately onto a function (spread operator):

const getDistance = (x, y, x2, y2) =>
Math.sqrt ((x+x2) **2+(y+y2) **2)

const point1l [3, 4]

const point2 [7, 21

// assign array values to all four parameters
getDistance (...pointl, ...point2)

Another useful application for the spread operator is to achieve a shallow copy of an
existing array:

const arrayl = [1, 2, 3]

const arraylcopy = arrayl

arraylcopy [0] = 5

arrayl [0] // returns 5 since both constants reference the
same array

const array2 = [1, 2, 3]
const array2copy = [...array2]
array2copy [0] = 5

array2[0] // returns 1 as expected

11

13

15

XIV

ES2015+ Modules

ES2015+ Modules allow to split codes into modules (not to be confused with the
module pattern in chapter 3, P. XVI). Modules allow for code maintainability and code
reuse across the same or different projects. Modules are pieces of code that exclusively
disclose intended functionalities using the export-keyword. Other Modules can then
reuse that functionality using the import-keyword. While modules can export multiple
properties or functions, they can have only one default export. When properties are
imported, they have to be imported using the name of the property, but can be aliased
using the as-keyword. The default export can be imported using any name preferred.
Additionally, non-default exports have to be imported using curly braces (see fig..5 for
examples).

// In file: JSONClient.js

const version = 'v3'
const url = 'http://example.com/' + version + '/api.json'
const get = _ => {

return await fetch(url)
.then(response => response.json())
b
export {url: url, version: version}
export default get

// In file: index.js

import {url} from 'JSONClient.js'

import JSONClient from 'JSONClient. js'
console.log('Retrieving data from ' + url)
console.log(JSONClient ())

Figure .5.: Exporting functionalities in form of modules, that an be reused

2. Examples for Prototypical Inheritance in JavaScript

This section goes into detail on how to use inheritance when building JavaScript ap-
plications. The goal is a better understanding how implementation is done and how
certain pitfalls can be avoided.

Since prototypes are working objects, the constructor function is defined first. Only
after that is done, the remaining properties and functions can be defined by using
the prototype-property (see fig..6). This is the equivalent to creating an Animal-class
with constructor, the property name and the method getName(). There is no pro-
tection against manipulating the prototype, which means later code could easily add
new functions or change how existing functions work, which will affect all instances.
Especially in the context of web applications, code can easily be manipulated by the
client and is not to be trusted. If data integrity is a concern, critical operations will
still need to be done on the server side, adding the requirement of having a working

10

XV

const Animal = function(name) {
this.name = name
}
Animal.prototype = {
getName: function() {
return this.name
}
}
const dog = new Animal ('Dog')
dog.getName () // returns 'Dog'

Figure .6.: Basic definition of a prototype and its instantiation

network connection at all times. However, in most use cases, the user would have no
interest in breaking the application exclusively on his own end and as long as user-
manipulated data has no way to feed back into the system that affects other users, the
risk is negligible. It should be noted that since ECMAScript 2015, there is actually a
class-Keyword to create classes in a more traditional way (see fig. .7). However this is
only syntactical sugar, it masks away prototypical inheritance but still uses it and all
the behavior that comes with it. To emphasize on the inherently prototypical behavior,
the class-style syntax is mostly avoided in this section. If that caveat is kept in mind,
it is a very efficient syntax, in regards to the amount of statements to write, and is
more similar to the way inheritance is usually done in certain other languages. Inher-

class Animal A
constructor (name) {
this.name = name
}
getName () {
return this.name
+
}

const dog = new Animal('Dog')
dog.getName ()

Figure .7.: ECMAScript 2015 style class definition, using the class-keyword

iting from a prototype is done by copying and extending the prototype of an existing
class. The constructor will have to also call the constructor of the class the current
class is inheriting from (see fig. .8). Using .call is comparable with the super()-method
in Java, except the current instance always has to be passed using this as the first
argument, before any potential argument of the parent method (or constructor in this
case) is set. In this example, the Animal()-constructor only has the argument name,
yet when invoked using the .call()-method, the current instance is passed before the
actual name-argument. When using the class-keyword, inheritance can be done using

10

12

14

XVI

const Dog = function() {
Animal.call(this, 'Dog')

}

Dog.prototype = Object.assign(
Object.create (Animal.prototype),
{

sound: function() {
return 'Woof!'

)

const dog = new Dog()
dog.sound () // returns 'Woof!'
dog.getName () // returns 'Dog'

Figure .8.: Prototypical inheritance of an existing class (Animal)

the extends-keyword.

class Dog extends Animal {...}

JavaScript interpreters resolve instance properties by utilizing the prototype chain.
Fach object instance has a proto -property containing everything defined in the
prototype that instance is based off. When the browser interprets the dog.sound()
call, it first checks whether dog. proto_ contains a function called sound. Since
the dog-instance is based off of Dog.prototype, which does in fact contain a sound-
function, the interpreter will know how this method works by merely entering the first
level of the prototype chain. However, for the next line, getName is not to be found
within the Dog-prototype. In this case, the interpreter will look one level deeper into
dog. _proto_ . proto__ which contains the prototype Animal, that Dog is based
off of. Since animal does contain getName, the interpreter will know how to execute
the method by going two levels into the prototype-chain. Ultimately, all object in-
stances inherit from the general Object-prototype which ends all prototype chains. If
no property-definition has been found by the time the interpreter arrived at the end of
the prototype chain, an error will be thrown.

3. Module Pattern

The module pattern is an alternative way to structure code by mainly using JavaScript
objects. The key idea is to define publicly visible instance properties within a plain
JavaScript object, while private properties are defined outside of that object. This all
happens within a self-executing, anonymous function, where only the object with its
public properties is returned (see fig. .9). It is important to note that this is an older
pattern that has been used long before ES2015+ modules existed and differs greatly

11

13

15

XVII

from those. ES2015+ modules allow to export anything useful, from constants, and
functions to complete classes (refer to chapter 1 on P.XIV for more info). The module
pattern on the other hand, is an alternative way to structure code opposed to using
classes.

With that being said, back to how the module pattern works: A module named

const Person = (function() {
// is only available within the module
const think = function(message) A{
return message

+s

return {
// can be called from outside the module
say: function(message) {
console.log(think (message))
}
+
O
Person.say("Hello") // logs "Hello"
Person.think ("some secret") // will throw an error

Figure .9.: Definition of a simple module using a self-executing, anonymous function

Person is defined with the methods think() and say(). Since say() is contained within
the object that is returned by the anonymous function, it will be publicly available
as a property of the Person module. The think() method, on the other hand, is not
returned and only available within the function scope. Since the function is, as men-
tioned, anonymous and self-executing, there is no way to address its contents anymore.
However, the say() method being defined in that same function scope is still able to
access think(), thus resembling a public/private encapsulation. It is important to note
that the module is not instantiated using the new keyword and thus does not constitute
an instance of a class. It is more comparable to static classes in other programming
languages or the Singleton-Pattern, where everything operates on the same object in-
stead of having multiple, independent instances.

Additionally, modules can be extended by passing it as a parameter to the self-executing
function of a new module (see fig. .10). Some sources that mention extending modules
will omit using Object.assign() and instead add new properties directly to the base
module!. However, this will also change the base module, making the definition of an
extended module redundant. Other authors even recommend assigning the base module
to the proto__-property of the extending module?, which exploits the prototype-
chain meant for actual inheritance, to implement the module pattern.

Object.assign() seems to be the most appropriate tool for this purpose, as it does exactly

"https:/ /toddmotto.com /mastering-the-module-pattern /
2http://metaduck.com/08-module-pattern-inheritance.html

11

10

12

14

16

XVIII

const Cook = (function(Person) {
const secretIngredient = "Cinnamon"
return Object.assign({}, Person, {
cook: function(ingredients) {
ingredients = ingredients || []
ingredients.push(secretIngredient)
console.log(ingredients.join(' and '))

B
}) (Person)
// Logs "Oatmeal and Milk and Sugar and Cinnamon"
Cook.cook (["Oatmeal", "Milk", "Sugar"])

Figure .10.: The Cook module extends the Person module with further functionality

what is needed: Merging one or multiple object properties into one. It is important to
note that Object.assign() does a shallow copy (opposed to a reference) of the supplied
objects, which ensures that any modification on the extended module will not affect
the module it is based off of.

While the module-pattern solves the missing encapsulation, it seems to miss out on the
concept of independently working instances. One possible workaround is a combination
of using prototypes with the module-pattern, where the prototype is defined within an
anonymous function which returns the final prototype (see fig..11). The downside of

const Animal = (function() {
var animalName
const AnimalClass = function(name) {
animalName = name
}

AnimalClass.prototype = {
getName: function() {
return animalName

}
+
return AnimalClass
O
const dog = new Animal ('Dog')

dog.getName () // returns 'Dog'
dog.name // returns undefined
dog.animalName // returns undefined

Figure .11.: Combining a prototype definition with the module-pattern

this approach is the limited usefulness of the this-keyword, which is meant to allow
addressing any property of an object. When the supposedly private properties are

10

12

14

XIX

defined outside the prototype (which they have to be, if they are to be made inacces-
sible from the outside), they can not be reached via this-keyword. This is also true in
the opposite direction where the private methods and properties outside the prototype
can not easily access properties within the prototype. This can be partly solved when
moving further away from the module-pattern and defining private properties inside
the constructor (see fig..12). With this approach, private properties still can not be
accessed using this-keyword, but it will now work with the opposite direction, which
means that private properties and methods will now be able to easily access all other
properties and methods using the this-keyword. In real-world scenarios, where classes

const Animal = function(name) {
var animalName = name // inaccessible from outside
this.getName = function() {
return animalName
}
}
Animal.prototype = {
// reserved for public properties or
// methods that purely access public properties
}
const dog = new Animal ('Dog')
dog.getName () // returns 'Dog'
dog.name // returns undefined
dog.animalName // returns undefined

Figure .12.: Definition of private properties inside the constructor

can easily grow into lots of private properties/methods, this approach of defining those
in the constructor will become increasingly less maintainable. The concept of having a
prototype which contains all of an objects definition becomes simply less true while the
code becomes harder to read. Additionally, while the concept behind private /public
encapsulation has been implemented, there is still no equivalent to protected visibility,
where methods and properties are only hidden from the outside but not from child
classes. With the currently shown implementations, any objects that inherits from
a base class with hidden properties will not be able to access those. Google engineer
Philip Walton suggests very sophisticated solutions [Wall4| to the aforementioned chal-
lenges by implementing a private storage, for which the object instance can be passed
to in order to approximate a similar syntax as using this for those private properties.
However, Waltons illustration of a protected-visibility implementation introduce addi-
tional helper classes to do inheritance in order to distribute protected properties to
child classes. This solution also introduces an additional dependency in the form of
node.js.

With both, Walton and Crockford [Cro01], heavily advocating the use of proper encap-
sulation, there is a need to reflect upon the value that encapsulation grants to software
engineers. One aspect is the ability of information-hiding in order to protect critical
properties from being accessed/overwritten, which grants consistency and robustness

XX

to an object. Another aspect is its self-documenting nature, as it clearly shows devel-
opers that need to use an object, which properties and methods are part of its API,
and which properties and methods are only for internal use. Pseudo-private properties
with a prefixed underscore will allow a comparable distinction, even though there is
no compiler nor interpreter that will enforce correct usage. Taking a look back at the
context of applications running inside the browser, it is important to understand that
client-side code can mot be trusted from a service providers side of view. JavaScript
code running in the browser is completely hackable by design and to this date there are
no protection- or validation-mechanisms. This begs the question if the added robust-
ness of proper encapsulation is worth the added complexity of actually implementing
it, given how the actual execution is outside of the developers control, and needs to be
decided on a case-per-case basis.

XXI

Eidesstattliche Erklarung

Ich versichere, die von mir vorgelegte Arbeit selbstédndig verfasst zu haben.
Alle Stellen, die wortlich oder sinngeméfs aus veroffentlichten oder nicht veréffentlichten
Arbeiten anderer entnommen sind, habe ich als entnommen kenntlich gemacht. Samtliche

Quellen und Hilfsmittel, die ich fiir die Arbeit benutzt habe, sind angegeben.

Die Arbeit hat mit gleichem Inhalt bzw. in wesentlichen Teilen noch keiner anderen
Priifungsbehérde vorgelegen.

Koln, April 13, 2018

Yasa Yener

	Introduction
	Viability of Web Applications
	Identifying good practices
	Approach

	State of Technology
	Building Applications in JavaScript
	Prototypical Inheritance
	Testing
	Routing and Rendering

	Progressive Web Apps
	Service Workers
	App Shell Model
	PRPL-Pattern
	Web Workers
	Operation System Integration

	Tooling
	Package Managers
	Module Bundling
	Transpiling

	Building Progressive Web Apps
	The Case Study
	Introducing the CRC806 Database
	Requirements
	Basic Factors
	Performance Factors
	Excitement Factors

	Architectural Challenges

	Implementing a Progressive Web App
	Preparing the Environment
	Choosing a Frontend Framework
	Static Site Generation
	Importing the Data
	Making a Responsive Layout
	Implementing Caching Strategies

	Evaluation
	Evaluation of Progressive Web Applications
	Requirements Coverage
	Basic Factors
	Performance Factors
	Excitement Factors

	Assessment of current Practices
	Costs
	Benefits

	Conclusion
	Viability of Web Applications
	Good practices for Progressive Web Applications
	Final Conclusion and Outlook

	Bibliography
	List of Figures
	Appendix
	ECMAScript 2015+
	Examples for Prototypical Inheritance in JavaScript
	Module Pattern

	Eidesstattliche Erklärung

